Assignment #5: Compressible Aerodynamics due 4/6/2020 before midnight via Learning Suite

ME 515
50 possible points

Because of the time lost with COVID-19 logistics you only need to complete 1 of the following 2 problems.

5.1 Compressible CFD. Analyze the RAE 2822 airfoil at the following conditions corresponding to Case 6 in this experimental data:

$\overline{M_{\infty}}$	0.725
α	2.92°
Re	6.5×10^{6}

The experimental setup fixes transition at 3% chord.

- (a) Provide calculations and a brief rationale for selecting significant CFD parameters: domain size and type, prism layer height, first cell height in prism layer, number of layers in prism layer, freestream boundary conditions (pressure/temperature), number of cells or other measure of mesh refinement, and anything else you think would be important to help someone understand/reproduce your approach.
- (b) Include several pictures of your mesh at different scales to demonstrate a quality mesh (e.g., near wall, transition from prism layers to outer mesh, near-body mesh, far-field domain).
- (c) Compare your C_p distribution, which has been tabulated here for the experimental data.
- (d) Compare your lift and drag. The experimental values for this case are $c_l = 0.743$, and $c_d = 0.0127$. Don't expect perfect agreement. Unlike a boundary layer, the shock location is generally not known a priori, and so capturing shock waves accurately is tricky without an adaptive mesh (see this paper for example—same airfoil but different freestream conditions).
- 5.2 Supersonic Airfoils. The main objective of this problem is to help you understand the range of validity of supersonic thin airfoil theory and the results provided by it. Consider a diamond-shaped airfoil with a maximum thickness-to-chord ratios of 5% at a freestream Mach number of $M_{\infty}=2.0$. Using both Supersonic Thin Airfoil theory and Shock-Expansion Theory (where you use the actual $\theta-\beta-M$ diagram/formulae for oblique shocks and Prandtl-Meyer expansion fans), answer the following questions and compare the results from both theories.
 - (a) Compare the lift coefficient, drag coefficient, and moment coefficient about the leading edge versus angle of attack for both methods across a *reasonable* operating range. You should have three plots (lift, drag, moment).
 - (b) What is the predicted lift curve slope and how does it compare to subsonic thin airfoil theory?
 - (c) Where is the predicted aerodynamic center, and how does that compare to subsonic thin airfoil theory?
 - (d) Discuss any differences you find between supersonic thin airfoil theory and shockwave theory.