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Fig. 1.1 Density variation with con-
trol volume size (logarithmic scale).
The behavior is erratic at small scales
because there are few molecules in
the control volume. At some point
the number of particles is so large
that the fluid acts like a continuum
with a volume we denote as Δ–𝑉𝑐 .

1Fundamentals

This chapter reviews various concepts that are covered in an introduc-
tory fluids or aerodynamics course, but with greater depth.

1.1 Density

A simple definition of density is mass per volume:

𝜌 =
𝑚

–𝑉 . (1.1)

However, the definition is not precise enough for a fluid as the size of
the volume if not defined. If the control volume is large then the the
density may vary significantly at different locations within the volume.

The need for a small volume leads to the next most common
definition of density:

𝜌 = lim
Δ–𝑉→0

Δ𝑚

Δ–𝑉 . (1.2)

However, this definition is also problematic. Fluids are made up of
individual molecules. Imagine freezing all of these particles, within
some control volume, in order to make a density measurement. Suppose
the volume is small enough so that there is only a couple of air particles
in it and we sum up their mass and divide by the volume. Now suppose
we make the volume a bit bigger so there is now a half dozen particle in
it and we repeat the measurement. Because there are so few particles,
as the volume changes size, the density measurement varies erratically
as shown on the left side of Fig. 1.1.

As we increase the size of the control volume eventually the number
of particles contained within the volume is so large that the fluid acts
like a continuum (we refer to this continuum volume as Δ–𝑉𝑐). After this
point, the density measurement begins to level out. For air at standard
temperature and pressure the size of this control volume is a cube with
sides approximately 1 micron in length. This control volume would
have about 30 million air molecules in it. That is a large enough number
that, statistically speaking, the density in the control volume is constant.
However, if we continued to increase the volume then at some point our

1



1 Fundamentals 2

density measurements would change because of spatial variation as
noted at the beginning of this section. So, a better definition of density
is:

𝜌 = lim
Δ–𝑉→Δ–𝑉𝑐

Δ𝑚

Δ–𝑉 . (1.3)

If we operate at scales aboveΔ–𝑉𝑐 we are said to employ the continuum
assumption. This means that we can treat the fluid not as individual
molecules, but as a continuous medium. Everything we consider
in this book will assume that the fluid is a continuum. While this
assumption is reasonable for most aerodynamic applications, it is not
always a good assumption. For example, at very high altitudes, air
molecules are spread out far enough that we can no longer reliably
use the Navier-Stokes equations. Instead, we could use the Boltzman
transport equations that uses a statistical description to model particle
transport.

One major categorization of fluids, related to density, is a distinction
between incompressible versus compressible. No fluid can be truly incom-
pressible, but it is a useful mathematical idealization. For now we will
think of incompressible as a fluid with constant density, but we will see
shortly that is an overly restrictive definition of incompressibility.

1.2 Pressure

Pressure is defined as
𝑝 = lim

Δ𝐴→0
=

Δ𝐹

Δ𝐴
. (1.4)

Again, we should keep in mind that the limit doesn’t really go to zero,
but rather to a small enough control volume to where the continuum
assumption is still valid. But for simplicity we won’t continue to make
that distinction.

Let us first consider why a fluid creates pressure. One way to
visualize the effect of pressure is to consider the individual air molecules
bouncing off a solid surface. The momentum transfer of the molecules
is proportional to their mass times their velocity. Since the force is
momentum per unit time, the pressure is then proportional to the
momentum flux:

𝑝 ∝ 𝜌𝑉2 . (1.5)

For an ideal gas, temperature is proportional to the mean kinetic energy
of the particles:

𝑇 ∝ 𝑉2 (1.6)

Combining these equations yields:

𝑝 ∝ 𝜌𝑇 (1.7)
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For an ideal gas the proportionality constant is the specific gas constant 𝑅:

𝑝 = 𝜌𝑅𝑇 (1.8)

For dry air the constant is:

𝑅 = 287.058 J
kg · K (1.9)

We motivated pressure by imaging particles bouncing off a surface,
but we know there is a pressure in a fluid away from surfaces as well.
If there is no surface nearby to exchange momentum with, how is there
a pressure? At first we might think the pressure arises because of
collisions between the molecules, but this is not the case and in fact
one of the assumptions for an ideal gas is that there are no interactions
between particles. As long as there is a large number of particles, the
situation is exactly the same as the case with a wall nearby as shown
in Fig. 1.2. For any molecule leaving, statistically speaking, another
will be entering. The momentum flux through the control volume is
the same (if the entering/leaving particle was straight on, then the
change in momentum would be 2𝑚𝑉 since the momentum has the
same magnitude but different signs in entering/leaving).

Fig. 1.2 Momentum transfer against
a wall or momentum flux though a
control volume is the same.

1.3 Shear Stress

Just like density and pressure, we can understand shear stresses better
by considering a molecular description of air. Imagine a bunch of faster
moving air particles next to a bunch of slower moving air particles as
shown in Fig. 1.3. The molecules exchange momentum causing the
faster particles to slow down and the slower particles to speed up. On
average the velocity profile would look something like that shown on
the right of Fig. 1.3. The forces acting on the particles arise from shear
stresses.

Now let us consider fluid particles moving next to a solid object.
The same principle applies. The molecules in the solid object have zero
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Fig. 1.3 Shear profile created from
faster moving particles above lower
moving particles.

Fig. 1.4 The no slip condition requires
that the velocity at a solid wall is zero.

Fig. 1.5 top: pressure, bottom: shear
stresses.

velocity. Because of the momentum exchange between particles the
fluid particles next to the wall must then also have zero velocity on
average (in the reference frame of the solid object). This is called the no
slip condition and is depicted in Fig. 1.4.

The layer of slow moving air near a solid surface is called a boundary
layer. The velocity gradient creates a shear stress given by:

𝜏 = 𝜇
𝜕𝑉

𝜕𝑦
, (1.10)

where 𝜇 is called the dynamic viscosity of the fluid.
Another common fluid categorization is viscous versus inviscid. An

inviscid fluid is one where the viscosity is zero. A truly inviscid fluid
doesn’t exist, but is often a good mathematical approximation.

1.4 Forces and Moments

All aerodynamics forces and moments arise from just pressure and
shear stresses (Fig. 1.5). Pressure can only act normal to a body, shear
stresses act tangential to the surface but can have a component in the
normal direction as well (more on this later). Once we know pressure
and shear stress everywhere on the surface of a body we can integrate
to get total forces.

Pressure is very important to aerodynamic flows. A few examples
will help illustrate. Consider the airfoils and cylinder depicted in
Fig. 1.6. For a Reynolds number of 1 million all of these shapes have the
same amount of drag, which is a rather surprising result. The airfoils
have low pressure drag because of their streamlined shape, but have
significant skin friction drag (resulting from shear) because of their large
surface area. The cylinder on the other hand has little skin friction drag,
but because it is blunt it has a large wake with significant pressure drag.
Even though the cylinder is much smaller the blunt shape creates drag
as high as the much larger airfoils. This is why aerodynamicists often
mention the need for streamlined shapes. This also explains why many
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Fig. 1.6 A NACA 6409 airfoil at 5
degrees angle of attack, a NACA 0024
airfoil at 0 degrees angle of attack,
and a cylinder at the scales of this
figure, all have the same drag force
for a Reynolds number of 1 million.

World War I era planes had such poor performance. Lots of wire bracing,
usually with biplanes, was required for structural reinforcement, but the
blunt shapes of circular wires created a large amount of drag. Between
the two world wars semi-monoconque designs (skin stiffened, like an
egg shell) and high-strength aluminum allowed for sufficient structural
strength without wire bracing.

Example 1.1 Atmospheric pressure

Pressure plays such an important role because the pressure in our atmo-
sphere is quite high. At sea level the pressure is about 2,000 lbs/ft2. A flat
plate the size of a piece of paper could carry 65 pounds by creating just a 5%
pressure differential from top to bottom.

When plotting pressure we generally use the nondimensional pres-
sure coefficient:

𝐶𝑝 =
𝑝 − 𝑝∞
1
2𝜌𝑉

2
∞

(1.11)

which is the gauge pressure divided by the dynamic pressure. For the
idealized inviscid flow around a cylinder we could plot the pressure as
a function of the azimuthal angle of the cylinder as shown in Fig. 1.7.
Because the cylinder is symmetric only one curve is shown to represent
both the top and bottom half.

Notice that the pressure starts high at the stagnation point, drops as
the flow speeds up around the cylinder, and then recovers the same
high pressure on the back side. Because the pressure distribution is
perfectly symmetric, there is no drag in this inviscid scenario. The
curve is reminiscent of rolling a ball down a frictionless hill. In the
absence of friction you should be able to return to the same height.
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Fig. 1.7 Pressure coefficient around
an idealized inviscid cylinder.

The presence of viscosity, however, alters the flow field. The
flow separates from the cylinder creating a large wake. The pressure
distribution does not recover to the same high pressure on the back
side, resulting in drag (Fig. 1.8). Notice that on the forward half of the

Fig. 1.8 Pressure coefficient around
an viscous cylinder.

cylinder the pressure changes from high to low. We call this a favorable
pressure gradient as to pressure accelerates the flow. On the back half
of the cylinder, the flow moves from a low pressure region to a high
pressure one. This is called an adverse pressure gradient. The fluid must
work against the adverse pressure gradient, and in the presence of
viscosity some energy is loss so it will not return all the around the
cylinder. Instead the fluid decreases in momentum and eventually
has zero velocity in the direction along the cylinder leading to flow
separation. The void is filled in with a low pressure wake.

Most of the time we are interested in streamlined bodies. The
pressure coefficient distribution for an airfoil is depicted in Fig. 1.9
An airfoil, however, is not symmetric, so we see two curves: one for
the upper surface and one for the lower surface. Also note that the
𝑦-axis plots the negative of the pressure coefficient. This is a common
convention because the upper surface (or suction side) is associated
with low pressures, whereas the lower surface (or pressure side) is
associated with higher pressures. Thus, by plotting the negative of the
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Fig. 1.9 Pressure coefficient around
an airfoil.

pressure coefficient, the upper curve corresponds to the upper surface
and lower curve corresponds to the lower surface. The two curves
start at the stagnation point (which for an inviscid, incompressible flow,
corresponds to 𝐶𝑝 = 1 as we will see in the next chapter). For the
upper surface we see rapid acceleration into the low pressure region
just aft of the nose, and then a long gradual pressure recovery, in an
adverse gradient, towards the trailing edge. It is important that the
pressure recovery in the adverse region is gradual, otherwise the flow
will separate. As we will also see in the next chapter, the force in
the vertical direction is given by the area between these two curves
(Eq. 2.126). Thus, we see that most of the lift (which is not quite the same
as the force in the vertical direction, as discussed below) is generated
by the upper surface. This is generally true, and is primarily why
many instruments for aircraft are located on the lower surface where
disrupting the flow field is less consequential.

The integration of the pressure and shear stresses over a body results
in forces and moments that could be resolved into any coordinate system.
For aerodynamic bodies some common conventions are discussed below.
By definition we define drag as the force in the direction of the freestream
(depicted in Fig. 1.10), and lift is always defined perpendicular to the
freestream. The force normal to the body is called the normal force (not
to be confused with lift). These forces are related by a simple coordinate
transformation:

𝐿 = 𝑁 cos 𝛼 − 𝐴 sin 𝛼 (1.12)
𝐷 = 𝑁 sin 𝛼 + 𝐴 cos 𝛼 (1.13)

Note also from the figure that the angle of attack is defined as the angle
between the freestream and the chord line, or some other reference line
of the vehicle.

As we will discuss in more detail later, nondimensional parame-
ters are critically important in aerodynamics. The lift and drag are
normalized as follows:

𝐶𝐿 =
𝐿

1
2𝜌𝑉

2
∞𝑆

(1.14)
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Fig. 1.10 Lift acts perpendicular to
the freestream.

Fig. 1.11 Lift curve.

𝐶𝐷 =
𝐷

1
2𝜌𝑉

2
∞𝑆

, (1.15)

where the symbol 𝑆 is a reference area. Anything can be used for the
reference area (it is just a reference), as long as one is consistent, but
there are general conventions depending on the application. The force
coefficients are meaningless without also defining what reference area
was used. For example, if you look up tables of drag coefficients for
various objects they will always define what type of reference area
should be used. Streamlined objects tend to use projected areas parallel
to the freestream (because the drag scales more with the skin friction
area), whereas blunt objects often use projected cross-sectional areas
normal to the freestream (because the drag is more pressure dominant
scaling with the projected frontal area).

The pitching moment is normalized as shown below, where 𝑐 is an
additional reference length (e.g., chord for an airfoil)

𝐶𝑀 =
𝑀

1
2𝜌𝑉

2
∞𝑆𝑐

. (1.16)

A moment causing the body to nose-up is typically considered positive.
In addition, to the 3D coefficients, we also have 2-D expressions for

the aerodynamic coefficients. The symbols are lowercase to indicate
2D. These expressions for lift, drag, and moment respectively are:

𝑐ℓ =
ℓ

1
2𝜌𝑉

2
∞𝑐

(1.17)

𝑐𝑑 =
𝑑

1
2𝜌𝑉

2
∞𝑐

(1.18)

𝑐𝑚 =
𝑚

1
2𝜌𝑉

2
∞𝑐2

. (1.19)

The lift coefficient is a function of angle of attack as shown in Fig. 1.11
(and potentially other nondimensional parameters like Reynolds num-
ber and Mach number). For a positively cambered airfoil (not symmet-
ric) the airfoil begins producing lift at a negative angle of attack called
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Fig. 1.12 Drag polar.

the zero-lift angle of attack. The lift then increases linearly with a slope
𝑚, called the lift curve slope. At some point, viscous effects dominant,
the flow separates and the lift drops (a phenomenon called stall). The
highest lift coefficient is called 𝑐𝑙𝑚𝑎𝑥 (pronounced: c-ell-max). For the
linear portion of the curve we can write:

𝑐𝑙 = 𝑚(𝛼 − 𝛼0) (1.20)

Similarly, we can plot the drag coefficient either as a function of
angle of attack or as a function of lift coefficient as shown in Fig. 1.12
Drag generally varies quadratically with lift (and thus with angle of
attack) over much of the drag polar.

Pitching moment coefficient (not shown) is usually negative and
relatively flat with respect to angle of attack for an airfoil.

1.5 Frequently Used Math Concepts

The gradient operator acts on a scalar and produces a vector:

∇𝑝 =
𝜕𝑝

𝜕𝑥
𝑥̂ + 𝜕𝑝

𝜕𝑦
𝑦̂ + 𝜕𝑝

𝜕𝑧
𝑧̂ (1.21)

The gradient is a vector that points in the direction where the scalar
field is increasing the fastest.

Divergence is a scalar quantity that acts on vectors:

∇ ·
⇀

𝑉 =
𝜕𝑉𝑥
𝜕𝑥

+
𝜕𝑉𝑦

𝜕𝑦
+ 𝜕𝑉𝑧

𝜕𝑧
(1.22)

It can be thought of as a measure of how much something is expanding
or contracting. If the vector

⇀

𝑉 is velocity its divergence measures
volume change per unit mass (or the rate of change of density). Thus,
for incompressible flows the divergence is zero (we will derive this
more rigorously shortly).

∇ ·
⇀

𝑉 = 0 → incompressible (1.23)

The curl is a vector quantity and it acts on vectors:

∇ ×
⇀

𝑉 =

(
𝜕𝑉𝑧
𝜕𝑦

−
𝜕𝑉𝑦

𝜕𝑉𝑧

)
𝑥̂ +

(
𝜕𝑉𝑥
𝜕𝑧

− 𝜕𝑉𝑧
𝜕𝑉𝑥

)
𝑦̂ +

(
𝜕𝑉𝑦

𝜕𝑥
− 𝜕𝑉𝑥

𝜕𝑉𝑦

)
𝑧̂ (1.24)

The curl measures the tendency of a vector field to create rotation. If
the vector

⇀

𝑉 is velocity then its curl is called vorticity ( ⇀
𝜔):

⇀
𝜔 = ∇ ×

⇀

𝑉 (1.25)
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Vorticity is an important aerodynamic quantity we will discuss later. It
is related to rotation as vorticity is twice the angular velocity.

Stoke’s theorem relates the contour integral of a vector around a
path to the curl (or rotation) of that vector inside the area.∮

𝐶

⇀

𝑉 · 𝑑
⇀

ℓ =

∫
𝐴

(
∇ ×

⇀

𝑉
)
· 𝑑

⇀

𝐴 (1.26)

The divergence theorem relates the flux of some vector leaving a control
volume to the divergence of that vector inside the enclosed volume.∫

𝐴

⇀

𝑉 · 𝑑
⇀

𝐴 =

∫
–𝑉

(
∇ ·

⇀

𝑉
)
𝑑–𝑉 (1.27)

Index notation, also known as Einstein notation, or sometimes tensor
notation, is a convenient representation often used in differential forms
of fluid equations. In this notation a single index represents all three
vector components. The same index may be used in separate terms
indicating a free index that is repeated for all three vector components.
Thus,

𝜕(𝜌𝑢𝑖)
𝜕𝑡

+ 𝜕𝑝

𝜕𝑥𝑖
= 0 (1.28)

is a shorthand for three equations:

𝜕(𝜌𝑢1)
𝜕𝑡

+ 𝜕𝑝

𝜕𝑥1
= 0 (1.29)

𝜕(𝜌𝑢2)
𝜕𝑡

+ 𝜕𝑝

𝜕𝑥2
= 0 (1.30)

𝜕(𝜌𝑢3)
𝜕𝑡

+ 𝜕𝑝

𝜕𝑥3
= 0 (1.31)

where the subscripts 1, 2, 3 correspond to separate Cartesian directions,
typically the 𝑥, 𝑦, 𝑧 directions.

A repeated index, in the same term, represents a summation. Thus,
𝜕𝑢𝑖/𝜕𝑥𝑖 is shorthand for:

3∑
𝑖=1

𝜕𝑢𝑖
𝜕𝑥𝑖

(1.32)

or
𝜕𝑢𝑖
𝜕𝑥𝑖

=
𝜕𝑢1
𝜕𝑥1

+ 𝜕𝑢2
𝜕𝑥2

+ 𝜕𝑢3
𝜕𝑥3

= ∇ ·
⇀

𝑉 (1.33)

We can combine the two types of indices (free index and summation
index) as shown in the expression below:

𝜕(𝜌𝑢𝑖)
𝜕𝑡

+
𝜕(𝜌𝑢𝑖𝑢𝑗)

𝜕𝑥 𝑗
= 0 (1.34)
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In this case index 𝑗 is repeated in the same term, which indicates a
summation. Whereas the index 𝑖 appears once in each term and is thus
the free index representing separate equations. There can only be one
free index, but there can be multiple summations, generally indicated
with additional indices. Written explicitly the above equations expands
out to:

𝜕(𝜌𝑢1)
𝜕𝑡

+ 𝜕(𝜌𝑢1𝑢1)
𝜕𝑥1

+ 𝜕(𝜌𝑢1𝑢2)
𝜕𝑥2

+ 𝜕(𝜌𝑢1𝑢3)
𝜕𝑥3

= 0 (1.35)

𝜕(𝜌𝑢2)
𝜕𝑡

+
𝜕(𝜌𝑢2𝑢1)

𝜕𝑥1
+

𝜕(𝜌𝑢2𝑢2)
𝜕𝑥2

+
𝜕(𝜌𝑢2𝑢3)

𝜕𝑥3
= 0 (1.36)

𝜕(𝜌𝑢3)
𝜕𝑡

+ 𝜕(𝜌𝑢3𝑢1)
𝜕𝑥1

+ 𝜕(𝜌𝑢3𝑢2)
𝜕𝑥2

+ 𝜕(𝜌𝑢3𝑢3)
𝜕𝑥3

= 0 (1.37)

(1.38)

While this shorthand takes some getting used to, once we are familiar
with it we can express many equations more concisely and clearly. This
shorthand becomes particularly useful once tensors are involved.

1.6 Dynamic Similarity

Nondimensional numbers are critically important in fluids. They
provide insight across problems of different scales. For example, a lift
of 60 N doesn’t mean much without context (is that a lot of lift or a
little?). On the other hand, we can tell if a lift coefficient is large or
small regardless of whether it is from a dragonfly or an airliner as the
lift coefficient falls along a narrow range.

Nondimensional numbers also also the basis of wind tunnel testing,
and similarity modeling in general. They also provide critical insight by
reducing the dimensionality of the problem, and highlight fundamental
relationships. Let’s illustrate with some examples.

Example 1.2 Nondimensional parameters for wind turbine power produc-
tion

Consider a wind turbine. The data we explore could come from experi-
mental measurements or computations, it doesn’t matter, but in this case it is
simulation data with added noise. As depicted in Fig. 1.13, we are interested in
understanding the relationship between the power the turbine produces and
two inputs: the incoming velocity and the rotation speed of the rotor.

For the purposes of this example, we let the inputs fall within the following
ranges with uniform probability:

𝑉∞ ∈ [5, 15] m/s
Ω ∈ [1, 30] RPM

(1.39)



1 Fundamentals 12

Fig. 1.13 A wind turbine with an in-
coming wind speed and a rotor rota-
tion speed.

Fig. 1.15 Power as a function of
windspeed for four different rotation
speeds.

We observe the output of many “experiments” in Fig. 1.14.

power vs windspeed power vs rotation speed

Fig. 1.14 The power produced by the
wind turbine as we randomly vary
wind speed and rotation speed.

There appears to be very little structure in this data. In other words, if
you were given a wind speed, you wouldn’t be able to predict the power
output (although it appears as if we could predict a maximum power, which is
true). The same conclusion applies for the rotation speed. Imagine that your
supervisor has given you the assignment to create a predictive model for the
turbine power as a function of two variables. So far, the data doesn’t appear
promising to allow this. What would you do?

Perhaps, evaluating random samples was the problem. Let’s instead try
holding the rotation speed constant, and just vary 𝑉∞. In Fig. 1.15 we perform
that experiment for four different rotation speeds.

This appears much more promising. Clear structure is visible. Perhaps we
would create a polynomial fit for each rotation speed separately, and then a
separate curve fit for the polynomial coefficients as a function of the rotation
speeds. This is still rather problematic, it’s fairly complex, and the curves seem
to go to zero power at different points making interpolation challenging.
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Fig. 1.16 Power coefficient as a func-
tion of tip speed.

Fig. 1.17 Same figure but color coded
by the rotation speed.

Formally, what we are trying to understand is a functional relationship
to predict power as a function of all inputs (including some we are holding
constant):

𝑃 = 𝑓 (𝑉∞ ,Ω, 𝜌, 𝑅) (1.40)

and perhaps other variables like viscosity. From previous courses you have
learned that appropriately chosen nondimensional parameters can simplify the
relationships between variables. Perhaps greater insight is available through
nondimensionalization.

While the Buckingham-Pi theorem can help us formally quantify how many
nondimensional parameters we need, most of the time it is straightforward
to determine an appropriate set. First, let’s nondimensionalize the velocities.
There are numerous possibilities but for wind turbines the standard convention
for normalizing the speeds is to use the tip-speed ratio, which is a ratio of the
tip-speed relative to the freesteam:

𝜆 =
Ω𝑅

𝑉∞
(1.41)

The power could also be nondimensionalized many ways, but the standard
way is to use the freesteam dynamic pressure times the rotor disk area (produc-
ing a force) then multiplying by the freestream velocity once more to obtain
power. This is called the power coefficient:

𝐶𝑃 =
𝑃

1
2𝜌𝑉

3
∞𝜋𝑅2

(1.42)

All of the parameters have been used in the nondimensionalization so these
are all the Pi groups. Our new equation now looks like:

𝐶𝑃 = 𝑓 (𝜆) (1.43)

Let’s try plotting the data as suggested by this nondimensionalization. The
data from Fig. 1.14 is shown in Fig. 1.16. and for Fig. 1.15 the results are shown
in Fig. 1.17.

Now the relationship is very clear. Given a velocity 𝑉∞ and rotation speed
Ω we can now provide a quite good prediction for the wind turbine’s power.
Note that we are able to do this without knowing anything about the physics
involved in the function 𝑓 .

Imagine an object/vehicle that we wish to predict aerodynamic
drag for. We could write the relationship as:

𝐷 = 𝑓 (𝑉∞ , 𝜌, 𝜇, 𝑎, 𝛼, shape) (1.44)

where 𝑎 is the speed of sound, and 𝛼 the angle of attack. Through
nondimensionalization the function is reduced to:

𝐶𝐷 = 𝑓 (𝛼, 𝑅𝑒, 𝑀, shape∗) (1.45)
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where 𝑠ℎ𝑎𝑝𝑒∗ means a nondimensional shape, and 𝑀 is the Mach
number. If we added gravity to the list of inputs then we would another
nondimensional parameter, the Froude number. Adding time would
yield another nondimensional parameter: the Strouhaul number. But
for most aerodynamic flows buoyancy is negligible and only Reynolds
number and Mach number are significant.

This equation means that if we have two identical shapes at different
scales (e.g., a full scale aircraft, and a small model) if we match the
Reynolds number and the Mach number then we can predict the drag
of the full scale model by performing tests on the small scale.

Now let us explore this concept a bit more rigorously from the
governing equations. As a simple case, we will look at just the 𝑥

component of the 2D incompressible Navier-Stokes equation

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣 𝜕𝑢

𝜕𝑦
= − 1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜇

𝜌

(
𝜕2𝑢

𝜕𝑥2 + 𝜕2𝑢

𝜕𝑦2

)
. (1.46)

We would like to nondimensionalize this equation. The first term has
two velocity terms in the numerator and one length in the denominator.
We can multiply the whole equation as follows using 𝑉∞ as a relevant
velocity and 𝑐 as a relevant length scale (e.g., the chord length of an
airfoil):

𝑐

𝑉2
∞

[
𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣 𝜕𝑢

𝜕𝑦
= − 1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜇

𝜌

(
𝜕2𝑢

𝜕𝑥2 + 𝜕2𝑢

𝜕𝑦2

)]
(1.47)

For convenience we define the following nondimensional variables:

𝑢∗ =
𝑢

𝑉∞
, 𝑣∗ =

𝑣

𝑉∞
, 𝑥∗ =

𝑥

𝑐
, 𝑦∗ =

𝑦

𝑐
(1.48)

We first focus on the first two terms, which nondimensionalize in a
straightforward way:

𝑢∗
𝜕𝑢∗

𝜕𝑥∗
+ 𝑣∗ 𝜕𝑢

∗

𝜕𝑦∗
= − 1

𝜌𝑉2
∞

𝜕𝑝

𝜕𝑥∗
+

𝜇𝑐

𝜌𝑉2
∞

(
𝜕2𝑢

𝜕𝑥2 + 𝜕2𝑢

𝜕𝑦2

)
(1.49)

For pressure we could nondimensionalize as follows:

𝑝∗ =
𝑝

𝜌𝑉2
∞

(1.50)

Although convention is to use the following (called the pressure coeffi-
cient):

𝑝∗ = 𝐶𝑝 =
𝑝 − 𝑝∞
1
2𝜌𝑉

2
∞
, (1.51)

because it is only pressure differences that matters in computing loads.
For the concept at hand it doesn’t matter. Either way, the term 𝑝∞ is
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constant and so drops out of the derivative. We’ll just use the simpler
nondimensionalization for this example.

𝑢∗
𝜕𝑢∗

𝜕𝑥∗
+ 𝑣∗ 𝜕𝑢

∗

𝜕𝑦∗
= −

𝜕𝑝∗

𝜕𝑥∗
+

𝜇𝑐

𝜌𝑉2
∞

(
𝜕2𝑢

𝜕𝑥2 + 𝜕2𝑢

𝜕𝑦2

)
(1.52)

For the last term there is one velocity term in the numerator (and we
already have a velocity in the denominator we can use to nondimen-
sionalize). There are two length scales in the denominator and so we
need to multiply and divide the last equation by 𝑐.

𝑢∗
𝜕𝑢∗

𝜕𝑥∗
+ 𝑣∗ 𝜕𝑢

∗

𝜕𝑦∗
= −

𝜕𝑝∗

𝜕𝑥∗
+

𝜇𝑐2

𝜌𝑉2
∞𝑐

(
𝜕2𝑢

𝜕𝑥2 + 𝜕2𝑢

𝜕𝑦2

)
(1.53)

𝑢∗
𝜕𝑢∗

𝜕𝑥∗
+ 𝑣∗ 𝜕𝑢

∗

𝜕𝑦∗
= −𝜕𝑝∗

𝜕𝑥∗
+ 𝜇

𝜌𝑉∞𝑐

(
𝜕2𝑢∗

𝜕𝑥∗2
+ 𝜕2𝑢∗

𝜕𝑦∗2

)
(1.54)

The equation is now nondimensional. We note that the factor
appearing at the beginning of the last term is one over the Reynolds
number:

𝑢∗
𝜕𝑢∗

𝜕𝑥∗
+ 𝑣∗ 𝜕𝑢

∗

𝜕𝑦∗
= −𝜕𝑝∗

𝜕𝑥∗
+ 1
𝑅𝑒

(
𝜕2𝑢∗

𝜕𝑥∗2
+ 𝜕2𝑢∗

𝜕𝑦∗2

)
(1.55)

The insight from this equation, is that if we match Reynolds numbers
for two similar geometries and boundary conditions then all of the
nondimensional fluid properties (velocity, pressure, density, etc.) will
be identical in the entire flow field.

If we used the compressible Navier-Stokes equation then another
parameter would emerge: the Mach number. If the unsteady term was
added then the Strouhaul number would emerge, and if the gravity
term was added then the Froude number would emerge.

Example 1.3 Matching Reynolds number

In practice, matching some of these parameters isn’t so easy. Consider
trying to match the Reynolds number between a full scale aircraft and a 1:20
scale model for use in a wind tunnel. The ratio of kinematic viscosity at 35,000
ft (typical altitude for a transport aircraft) as compared to sea level is about
three (𝜈𝑎𝑙𝑡 = 3𝜈𝑤𝑡 ). If we equate the Reynolds number at altitude (𝑎𝑙𝑡) and the
wind tunnel model (𝑤𝑡):

𝑉𝑎𝑙𝑡 𝑙𝑎𝑙𝑡
𝜈𝑎𝑙𝑡

=
𝑉𝑤𝑡 𝑙𝑤𝑡
𝜈𝑤𝑡

(1.56)

Solving for the velocity ratio shows that the velocity in the wind tunnel must
be about seven times that of the aircraft’s velocity! This is rather problematic.
Some possible ways to address this include using a pressurized tunnel, or
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a cryogenic tunnel, but both of these solutions are expensive and generally
require smaller tunnels which makes the problem harder.

In practice, many wind tunnel experiments don’t match Reynolds
number. That isn’t always as bad as it sounds. For example, consider the
drag coefficient around a sphere (Fig. 1.18). Notice how the Reynolds
number varies across a wide range in the figure from 1 to 100 million.
Most other nondimensional parameters vary along a small range, near
1. Reynolds number is an exception, effectively it varies with log scaling
rather than linear scaling. The upshot is that one generally only needs
to match Reynolds number within the same order of magnitude. In
fact, we can often get away with not even getting close to matching
Reynolds number as long as we are in the same flow regime (laminar or
turbulent). The exception is near transition from laminar to turbulent
flow (the steep drop in the figure). For our aircraft example, the wind
tunnel may be at too low of a Reynolds number to naturally have
turbulent flow, whereas the full-scale aircraft will be turbulent much
earlier. A common approach for wind tunnel testing in these scenarios
is to intentionally trip turbulence at the desired location by adding
zigzag tape, or a roughness patch. Matching Reynolds number is
generally only critical in the boundary layer where viscous effects are
large, and so tripping the boundary layer can work reasonably well
without actually matching the Reynolds number.

Fig. 1.18 Drag coefficient of a sphere
as a function of Reynolds number.
Public domain image.

1.7 Governing Equations

Sometimes we call the governing equations in fluid mechanics conser-
vation laws. However, that is a bit of a misnomer. Momentum, for

https://commons.wikimedia.org/wiki/File:Drag_coefficient_on_a_sphere_vs._Reynolds_number_-_main_trends.svg
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example, isn’t conserved. Newton’s second law doesn’t say 𝑑𝑝/𝑑𝑡 = 0,
but rather equates forces with changes in momentum. Balance laws is
perhaps a more apt terminology.

The balance laws in fluid mechanics are analogous to the principles
of balancing your bank account, which we can write in a generic way
as:

accumulation = inflow - outflow + production (1.57)

For finances, the accumulation is the total in your bank account, inflow
is deposits, outflow is withdraws, and production is interest. The
same idea works in fluids although we generally reorder, combine
inflow/outflow, and speak of rates:

rate of accumulation + rate of net outflow = rate of production
(1.58)

Let’s apply this principle to the mass in a control volume. First,
mass accumulates in a control volume as the change in time of the total
mass integrated over the volume:

𝜕

𝜕𝑡

∫
–𝑉
𝜌𝑑–𝑉 (1.59)

The net outflow is an integral over the mass entering or leaving the
surface area per unit time: ∫

𝐴

𝜌
⇀

𝑉 · 𝑑
⇀

𝐴 = 0 (1.60)

Finally, mass cannot be produced within the control volume. Putting
these pieces together yields:

𝜕

𝜕𝑡

∫
–𝑉
𝜌𝑑–𝑉 +

∫
𝐴

𝜌
⇀

𝑉 · 𝑑
⇀

𝐴 = 0 (1.61)

This is the integral form of the mass equation.
We can obtain the differential form through a few additional steps.

For the first term we move the derivative inside the integral. Differentia-
tion and integration commute (as long as the function and its derivative
are continuous) and so we can swap the order. For the second term we
apply the divergence theorem (Eq. 1.27):∫

–𝑉
𝜕𝜌

𝜕𝑡
𝑑–𝑉 +

∫
–𝑉
∇ ·

(
𝜌

⇀

𝑉
)
𝑑–𝑉 = 0 (1.62)

Next, we combine the equations into one integral:∫
–𝑉

(
𝜕𝜌

𝜕𝑡
+ ∇ ·

(
𝜌

⇀

𝑉
))
𝑑–𝑉 = 0 (1.63)
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Because this equation must apply for every control volume in the fluid,
the integrand must be zero everywhere:

𝜕𝜌

𝜕𝑡
+ ∇ ·

(
𝜌

⇀

𝑉
)
= 0 (1.64)

This is the differential form of the mass equation.
Let’s now explore what the implications are for an incompressible

flow. First, we need to understand what the total derivative of density
looks like. The density in a fluid can vary with position and time:

𝜌(𝑥, 𝑦, 𝑧, 𝑡) (1.65)

Let’s take the derivative of this function with respect to time, realizing
that the position 𝑥, 𝑦, 𝑧 of the fluid particle can also vary with time.

𝑑𝜌

𝑑𝑡
=

𝜕𝜌

𝜕𝑡
+ 𝜕𝜌

𝜕𝑥

𝑑𝑥

𝑑𝑡
+ 𝜕𝜌

𝜕𝑦

𝑑𝑦

𝑑𝑡
+ 𝜕𝜌

𝜕𝑦

𝑑𝑧

𝑑𝑡
(1.66)

Noting that 𝑑𝑥/𝑑𝑡 = 𝑢, the x-component of velocity, and similarly for
the other components:

𝑑𝜌

𝑑𝑡
=

𝜕𝜌

𝜕𝑡
+ 𝜕𝜌

𝜕𝑥
𝑢 + 𝜕𝜌

𝜕𝑦
𝑣 + 𝜕𝜌

𝜕𝑦
𝑤 (1.67)

Finally, we can write this in a generic vector notation (independent of
coordinate system choice):

𝑑𝜌

𝑑𝑡
=

𝜕𝜌

𝜕𝑡
+ ∇𝜌 ·

⇀

𝑉 (1.68)

In fluid mechanics we often give this total derivative the special name:
material derivative or substantial derivative and denote it with a big
𝐷 (although mathematically a little 𝑑 has the same meaning, its just a
total derivative):

𝐷()
𝐷𝑡

=
𝜕()
𝜕𝑡

+ ∇() ·
⇀

𝑉 (1.69)

The first term in the substantial derivative tell us how a fluid
property changes in time at a fixed point, whereas the second term tells
us how a fluid property changes due to fluid motion. This is perhaps
most easily visualized with temperature. Imagine a cold region of air
and a hot region of air and that the entire volume of air was static
(i.e., temperature is not changing in time). In this case the first term
would be zero, but a fluid particle moving from the cold to the hot
region would experience a change a temperature from the convective
(second) term. Now imagine that the entire mass of air (both cold and



1 Fundamentals 19

hot regions) was heated up. Now the first term would be increasing
even without moving. As we track the fluid particle the total change in
temperature is due to the convective motion and the temporal change
in temperature. The total derivative captures this full change.

With that background we can now understand that an incompress-
ible flow has:

𝐷𝜌

𝐷𝑡
=

𝜕𝜌

𝜕𝑡
+ ∇𝜌 ·

⇀

𝑉 = 0 (1.70)

This means for an incompressible flow it is not necessary that both
terms in the substantial derivative are zero, but rather only that their
sum is zero. Thus, while all constant density flows are incompressible,
not all incompressible flows are constant density. Common examples
of the latter are mixtures of two fluids (e.g., salt water with fresh water,
or helium mixed with air). The density at a given fixed point changes in
time, and if you moved between the two types of water the density also
changes. However, the density following a given fluid particle does not
change (if incompressible). Another way to state this is that the density
is constant in a Lagrangian frame, not an Eulerian one.

Let’s now go back to our mass balance equation and apply the
definition of incompressibility. Repeating the mass balance equation
(Eq. 1.64):

𝜕𝜌

𝜕𝑡
+ ∇ ·

(
𝜌

⇀

𝑉
)
= 0 . (1.71)

First, we apply the differential operator across the variables in the
second term:

𝜕𝜌

𝜕𝑡
+ ∇𝜌 ·

⇀

𝑉 + 𝜌∇ ·
⇀

𝑉 = 0 . (1.72)

We see that the first two terms are the substantial derivative so this
equation becomes:

𝐷𝜌

𝐷𝑡
+ 𝜌∇ ·

⇀

𝑉 = 0 . (1.73)

For an incompressible flow the substantial derivative of density is zero,
thus the mass balance equation simplifies for an incompressible flow
to:

∇ ·
⇀

𝑉 = 0 . (1.74)

Again, if the density is constant we would arrive at this same conclusion,
but we can also arrive at this conclusion for non-constant density flows
that are still incompressible. We will use this formula multiple times
throughout the book to apply incompressibility assumptions. This
definition should make sense from what a divergence represents. This
formula tells us that for an incompressible fluid, the volume of a
particular quantity of fluid mass cannot expand or contract.
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Let’s now apply our balance law to momentum. The first, two terms
(accumulation and net outflow) are nearly the same as that for mass,
but are multiplied by another velocity to produce momentum. In this
case we won’t worry about moving control volumes. For momentum,
there are production terms, which come from forces (via Newton’s
second law). For aerodynamics these forces arise from pressure and
shear stresses.

𝜕

𝜕𝑡

∫
–𝑉
𝜌

⇀

𝑉𝑑–𝑉 +
∫
𝐴

𝜌
⇀

𝑉
(
⇀

𝑉 · 𝑑
⇀

𝐴
)
= −

∫
𝐴

𝑝𝑑
⇀

𝐴 +
∫
𝐴

↔
𝜏 ·𝑑

⇀

𝐴 (1.75)

where
↔
𝜏 is the stress tensor.

We can put this equation in differential form using the divergence
theorem in the same manner as in the mass balance. This is easiest to
do using Einstein notation. The integral equation becomes:

𝜕

𝜕𝑡

∫
–𝑉
𝜌𝑢𝑖𝑑–𝑉 +

∫
𝐴

𝜌𝑢𝑖𝑢𝑗𝑑𝐴 𝑗 = −
∫
𝐴

𝑝𝑑𝐴𝑖 +
∫
𝐴

𝜏𝑖 𝑗𝑑𝐴 𝑗 (1.76)

In index form the divergence theorem (Eq. 1.27) is:∫
𝐴

𝑢𝑗𝑑𝐴 𝑗 =

∫
–𝑉

𝜕𝑢𝑗

𝜕𝑥 𝑗
𝑑–𝑉 (1.77)

Applying the divergence theorem to Eq. 1.76 and moving the derivative
under the integral results in:∫

–𝑉
𝜕(𝜌𝑢𝑖)
𝜕𝑡

𝑑–𝑉 +
∫

–𝑉

𝜕(𝜌𝑢𝑖𝑢𝑗)
𝜕𝑥 𝑗

𝑑–𝑉 = −
∫

–𝑉
𝜕𝑝

𝜕𝑥𝑖
𝑑–𝑉 +

∫
–𝑉

𝜕𝜏𝑖 𝑗

𝜕𝑥 𝑗
𝑑–𝑉 (1.78)

Combining the integrals into one integral and noting that the equation
must apply for any control volume and so the integrand must be zero,
gives the differential form of the momentum equation:

𝜕(𝜌𝑢𝑖)
𝜕𝑡

+
𝜕(𝜌𝑢𝑖𝑢𝑗)

𝜕𝑥 𝑗
= − 𝜕𝑝

𝜕𝑥𝑖
+

𝜕𝜏𝑖 𝑗

𝜕𝑥 𝑗
(1.79)

Note that since 𝑖 appears once in each term it represents a vector
equation (three equations in 𝑥, 𝑦 and 𝑧). The index 𝑗 appears twice in
some terms indicating a summation over 𝑗 = 1 . . . 3.

We can simplify this equation by expanding the derivatives (focusing
on the just the left hand side):

𝜕(𝜌𝑢𝑖)
𝜕𝑡

+
𝜕(𝜌𝑢𝑖𝑢𝑗)

𝜕𝑥 𝑗
= (1.80)

𝜌
𝜕𝑢𝑖
𝜕𝑡

+ 𝑢𝑖
𝜕𝜌

𝜕𝑡
+ 𝑢𝑖

𝜕(𝜌𝑢𝑗)
𝜕𝑥 𝑗

+ 𝜌𝑢𝑗
𝜕(𝑢𝑖)
𝜕𝑥 𝑗

(1.81)
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Next, we use the continuity equation (Eq. 1.64) in differential form:

𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢𝑗)
𝜕𝑥 𝑗

= 0 (1.82)

The second and third terms in Eq. 1.81 is exactly 𝑢𝑖 times the continuity
equation and so those two terms sum to zero. The remaining two terms
are the definition of the substantial derivative:

𝜌
𝜕𝑢𝑖
𝜕𝑡

+ 𝜌𝑢𝑗
𝜕(𝑢𝑖)
𝜕𝑥 𝑗

= 𝜌
𝐷𝑢𝑖

𝐷𝑡
(1.83)

Substituting this new left hand side back into the momentum equations
results in the following formula:

𝜌
𝐷𝑢𝑖

𝐷𝑡
= − 𝜕𝑝

𝜕𝑥𝑖
+

𝜕𝜏𝑖 𝑗

𝜕𝑥 𝑗
(1.84)

Or if we really want to be compact we can define the total stress as the
combination of pressure and shear stress:

𝜎𝑖 𝑗 = −𝑝𝛿𝑖 𝑗 + 𝜏𝑖 𝑗 (1.85)

where 𝛿𝑖 𝑗 is the Kronecker delta:

𝛿𝑖 𝑗 =

{
1 if 𝑖 = 𝑗

0 if 𝑖 ≠ 𝑗
(1.86)

Then the momentum equation becomes:

𝜌
𝐷𝑢𝑖

𝐷𝑡
=

𝜕𝜎𝑖 𝑗

𝜕𝑥 𝑗
(1.87)

1.8 Stress Tensor

The only term that may be unfamiliar in this equation is the stress
tensor 𝜏. To formulate the stress tensor we need a relationship between
stresses and strains, which is called a constitutive equation. Stresses are
related to the velocity gradients:

𝜕𝑢𝑖
𝜕𝑥 𝑗

(1.88)

We can write the velocity gradient in the equivalent form:

𝜕𝑢𝑖
𝜕𝑥 𝑗

=
1
2

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

)
+ 1

2

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

−
𝜕𝑢𝑗

𝜕𝑥𝑖

)
(1.89)
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*Any rank 2 tensor can be decomposed
into the sum of a symmetric and an anti-
symmetric tensor.

†Actually it is a rate of strain tensor as these
are velocities, not deflections.

Notice that the second and fourth terms cancel, and the first and second
add back to the original relationship. This seems a rather unnecessary
complication, but the usefulness is that the first two terms together form
a symmetric tensor, and the last two form an antisymmetric tensor.*
A tensor 𝑎𝑖 𝑗 is antisymmetric if 𝑎𝑖 𝑗 = −𝑎 𝑗𝑖 . For convenience we will
express these two groupings as:

𝜕𝑢𝑖
𝜕𝑥 𝑗

= 𝜖𝑖 𝑗 + 𝜔𝑖 𝑗 (1.90)

The first term, the symmetric portion, we call the strain tensor.†

𝜖𝑖 𝑗 =
1
2

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

)
(1.91)

The strain tensor describes deformations. The antisymmetric, second
term, is the vorticity tensor and it describes pure rotation. Like pure
translations, pure rotation does not create stresses. Thus, the stress
tensor is related only to the strain tensor (the symmetric portion of the
velocity gradients).

For a Newtonian fluid we assume that the stress-strain relationship is
linear. Most fluids are quite accurately classified as linear, including
air. However, there are non-Newtonian fluids where the stress-strain
relationship is nonlinear and thus the viscosity varies with stress.
Common examples are blood, ketchup, honey, and paint.

In a general case the relationship would look like:

𝜏𝑖 𝑗 = 𝐾𝑖 𝑗𝑘𝑙𝜖𝑘𝑙 (1.92)

where 𝐾 is a fourth-order tensor with 34 = 81 constants relating the
nine stress components (𝜏𝑥𝑥 , 𝜏𝑥𝑦 , . . .) to the nine strain components.
However, because fluids are isotropic (fluid properties are the same
in all directions) tensor theory shows that the most general isotropic
fourth order tensor is as follows:

𝐾𝑖 𝑗𝑘𝑙 = 𝜆𝛿𝑖 𝑗𝛿𝑘𝑙 + 𝜇𝛿𝑖𝑘𝛿 𝑗𝑙 + 𝜈𝛿𝑖𝑙𝛿 𝑗𝑘 (1.93)

where 𝜆, 𝜇 and 𝜈 are all constants (down to 3 constants from the original
81).

Because we know that the stress tensor is also symmetric we can
exchange the 𝑖 𝑗 components:

𝐾𝑖 𝑗𝑘𝑙 = 𝐾 𝑗𝑖𝑘𝑙 = 𝜆𝛿 𝑗𝑖𝛿𝑘𝑙 + 𝜇𝛿 𝑗𝑘𝛿𝑖𝑙 + 𝜈𝛿 𝑗𝑙𝛿𝑖𝑘 (1.94)

Comparing with the previous equation we see that the first term is
identical, since the Kronecker delta is symmetric 𝛿𝑖 𝑗 = 𝛿 𝑗𝑖 . Comparing
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‡This is exactly the same situation with
isotropic structural materials where the
constitutive equation relating stress and
strain requires only two constants: the
modulus of elasticity 𝐸 and Poisson’s ratio
𝜈.

§Any rank 2 tensor can be separated into
the sum of a hydrostatic and a deviatoric
tensor.
¶As another structural analogue, this is ex-
actly the same process whereby von Mises
stress is derived (via distortional energy
theory). It is the deviatoric compoinent of
the stress that is assumed to be related to
failure.

the latter two terms we see that 𝜇 = 𝜈, and so a general isotropic,
symmetric, fourth-order tensor is expressed as:

𝐾𝑖 𝑗𝑘𝑙 = 𝜆𝛿𝑖 𝑗𝛿𝑘𝑙 + 𝜇
(
𝛿𝑖𝑘𝛿 𝑗𝑙 + 𝛿𝑖𝑙𝛿 𝑗𝑘

)
(1.95)

Note that there are only two unique constants, 𝜇 and 𝜆, which for a
fluid we call the first and second coefficients of viscosity.‡

We now plug this general tensor relationship (Eq. 1.95) into the
constitutive equation (Eq. 1.92):

𝜏𝑖 𝑗 =
[
𝜆𝛿𝑖 𝑗𝛿𝑘𝑙 + 𝜇

(
𝛿𝑖𝑘𝛿 𝑗𝑙 + 𝛿𝑖𝑙𝛿 𝑗𝑘

) ]
𝜖𝑘𝑙 (1.96)

One of the rules of the Kronecker delta is that it can be contracted as
follows (note the sum over 𝑖):

𝑎𝑖𝛿𝑖 𝑗 = 𝑎 𝑗 , (1.97)

which can be seen to be true because 𝛿𝑖 𝑗 is zero unless 𝑖 = 𝑗. Thus, the
stress tensor simplifies as:

𝜏𝑖 𝑗 =
[
𝜆𝛿𝑖 𝑗𝛿𝑘𝑙 + 𝜇

(
𝛿𝑖𝑘𝛿 𝑗𝑙 + 𝛿𝑖𝑙𝛿 𝑗𝑘

) ]
𝜖𝑘𝑙

= 𝜆𝛿𝑖 𝑗𝛿𝑘𝑙𝜖𝑘𝑙 + 𝜇
(
𝛿𝑖𝑘𝛿 𝑗𝑙𝜖𝑘𝑙 + 𝛿𝑖𝑙𝛿 𝑗𝑘𝜖𝑘𝑙

)
= 𝜆𝛿𝑖 𝑗𝜖𝑘𝑘 + 𝜇

(
𝜖𝑖 𝑗 + 𝜖 𝑗𝑖

)
= 𝜆𝛿𝑖 𝑗𝜖𝑘𝑘 + 2𝜇𝜖𝑖 𝑗

(1.98)

where the last line was simplified because the strain tensor is symmetric.
Finally, expanding the strain tensor explicitly (Eq. 1.91) gives the
expression:

𝜏𝑖 𝑗 = 𝜇

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

)
+ 𝜆

(
𝜕𝑢𝑘
𝜕𝑥𝑘

)
𝛿𝑖 𝑗 . (1.99)

The second coefficient of viscosity 𝜆 is a bit problematic because it
adds another unknown that we don’t have an equation for. Fortunately
in many cases the last term in Eq. 1.99 is zero: inviscid flow (viscosity
coefficients are zero), incompressible flow (the divergence 𝜕𝑢𝑘/𝜕𝑥𝑘 =
∇ ·

⇀

𝑉 = 0), or in boundary layers where viscous shear stresses are much
larger than viscous normal stresses. However, for viscous compressible
flows that term is not zero and we need a model to address it.

To motivate this model, let us consider the hydrostatic and deviatoric
components of the stress tensor.§ The hydrostatic value is just the average
of the three diagonal components, and in matrix form is placed along
the diagonals. This portion is invariant to rotation, and thus acts like
pressure. The deviatoric component is just the original tensor minus
the hydrostatic tensor.¶ In this case the hydrostatic component is:
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1. Buresti, A note on Stokes’ hypothesis,
2015.

ℎ𝑖 𝑗 =
1
3trace(𝜏)𝛿𝑖 𝑗

=
1
3𝜏𝑘𝑘𝛿𝑖 𝑗

=
1
3

(
2𝜇𝜕𝑢𝑘

𝜕𝑥𝑘
+ 3𝜆𝜕𝑢𝑙

𝜕𝑥𝑙

)
𝛿𝑖 𝑗

=

(
2
3𝜇 + 𝜆

)
𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖 𝑗

= 𝜅
𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖 𝑗

(1.100)

In the second line we used 𝛿𝑘𝑘 = 3 from the definition of the Kronecker
delta, and in the third line we combined the two terms since the
summation indices were both arbitrary dummy indices. Finally, the
quantity 2/3𝜇 + 𝜆 is known as the bulk viscosity, 𝜅, and was thus
simplified for convenience in the last line.

The deviatoric component is then:

𝑑𝑖 𝑗 = 𝜏𝑖 𝑗 − ℎ𝑖 𝑗

= 𝜇

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

)
− 2

3𝜇
(
𝜕𝑢𝑘
𝜕𝑥𝑘

)
𝛿𝑖 𝑗 .

(1.101)

Stoke’s hypothesis is that the bulk viscosity 𝜅 is zero. The rationale
is that we expect the hydrostatic component of the shear stress to be
zero. In other words the effective pressure, often called the mechanical
pressure, is exactly the same as the thermodynamic pressure, which
assumes that thermodynamic equilibrium occurs rapidly. The shear
stress then only produces deviatoric components (only shear and no
pure volume dilation/compression).

This hypothesis is widely used, and generally produces good results.
Some theoretical arguments and limited experiments (it is difficult to
measure the bulk viscosity) suggest that 𝜅 is negligible for some gases.
However, in other scenarios have shown it to be quite large. More recent
arguments suggest that it is not the bulk viscosity that is negligible but
rather that the product 𝜅∇ ·

⇀

𝑉 (seen in Eq. 1.100) is typically negligible
compared to the thermodynamic pressure.1 Both assumptions result in
the hydrostatic component vanishing (although the latter argument is
more physically defensible).

Using this hypothesis, the stress tensor retains only the deviatoric
component:

𝜏𝑖 𝑗 = 𝜇

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

)
− 2

3𝜇
(
𝜕𝑢𝑘
𝜕𝑥𝑘

)
𝛿𝑖 𝑗 (1.102)

https://dx.doi.org/10.1007/s00707-015-1380-9
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For an incompressible flow, the stress tensor portion simplifies
considerably. First, the second term in the stress tensor vanishes
because 𝜕𝑢𝑘/𝜕𝑥𝑘 = ∇ ·

⇀

𝑉 = 0 for an incompressible flow. Next, we need
to take the derivative of the stress tensor since that is how it appears in
the Navier-Stokes equations. For an incompressible flow 𝜇 is constant
(not true for compressible flows where 𝜇 is function of temperature)
and so we can pull it out of the derivative.

𝜕𝜏𝑖 𝑗

𝜕𝑥 𝑗
= 𝜇

(
𝜕2𝑢𝑖

𝜕𝑥2
𝑗

+
𝜕2𝑢𝑗

𝜕𝑥𝑖𝜕𝑥 𝑗

)
(1.103)

But since the divergence of the velocity field is zero for an incom-
pressible flow (𝜕𝑢𝑗/𝜕𝑥 𝑗 = 0), the second term vanishes. Plugging this
simplification into Eq. 1.84 yields the incompressible momentum equation:

𝜌
𝐷

⇀

𝑉

𝐷𝑡
= −∇𝑝 + 𝜇∇2 ⇀

𝑉 (1.104)

For an incompressible flow there are only four unknowns: the three
components of velocity and pressure (the density is either constant
or known for the incompressible case). There are also four equations:
mass and three momentum equations. For compressible flows we
have two additional unknowns (e.g., temperature and density) and
two additional equations: the energy equation and a thermodynamic
equation of state (e.g., ideal gas equation).

1.9 Vorticity Equation

In this section we derive the vorticity equation, an alternative form of
the Navier–Stokes equation useful in some contexts. Before doing so
we review a few vector calculus identities:

∇ × (𝜙
⇀

𝐴) = 𝜙(∇ ×
⇀

𝐴) + ∇𝜙 ×
⇀

𝐴 (1.105)

∇ × (∇𝜙) = 0 (1.106)

∇ · (∇ ×
⇀

𝐴) = 0 (1.107)
1
2∇(

⇀

𝐴 ·
⇀

𝐴) = (
⇀

𝐴 · ∇)
⇀

𝐴 +
⇀

𝐴 × (∇ ×
⇀

𝐴) (1.108)

∇ × (
⇀

𝐴 ×
⇀

𝐵) =
⇀

𝐴(∇ ·
⇀

𝐵) −
⇀

𝐵(∇ ·
⇀

𝐴) + (
⇀

𝐵 · ∇)
⇀

𝐴 − (
⇀

𝐴 · ∇)
⇀

𝐵 (1.109)

We can derive the vorticity equation by taking the curl of the
Navier-Stokes equation.

∇ ×
(
𝜕

⇀

𝑉

𝜕𝑡
+ (

⇀

𝑉 · ∇)
⇀

𝑉

)
= − 1

𝜌
∇𝑝 + 1

𝜌
∇ · 𝜏 (1.110)
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Expanding terms by recalling that vorticity is the curl of velocity
(Eq. 1.25), and using some of the above identities (Eqs. 1.105, 1.106,
and 1.108) gives:

𝜕
⇀
𝜔

𝜕𝑡
+ ∇ ×

(
1
2∇(

⇀

𝑉 ·
⇀

𝑉) −
⇀

𝑉 × (∇ ×
⇀

𝑉)
)
=

1
𝜌2 ∇𝜌 × ∇𝑝 + ∇ ×

(
1
𝜌
∇ · 𝜏

)
(1.111)

Let’s now focus on the second term:

∇ ×
(
1
2∇(

⇀

𝑉 ·
⇀

𝑉) −
⇀

𝑉 × (∇ ×
⇀

𝑉)
)
= ∇ ×

(
∇

(
𝑉2

2

)
−

⇀

𝑉 × 𝜔

)
(1.112)

where 𝑉 is the magnitude of
⇀

𝑉 . Since 𝑉2 is just a scalar, this first term
drops out by Eq. 1.106.

∇ ×
(
1
2∇(

⇀

𝑉 ·
⇀

𝑉) −
⇀

𝑉 × (∇ ×
⇀

𝑉)
)
= ∇ ×

(
𝜔 ×

⇀

𝑉
)

(1.113)

We now expand the right hand side using Eq. 1.109

∇ ×
(
1
2∇(

⇀

𝑉 ·
⇀

𝑉) −
⇀

𝑉 × (∇ ×
⇀

𝑉)
)
= (1.114)

=
⇀
𝜔(∇ ·

⇀

𝑉) −
⇀

𝑉(���∇ · ⇀
𝜔) + (

⇀

𝑉 · ∇)⇀
𝜔 − (⇀

𝜔 · ∇)
⇀

𝑉

(1.115)

where the second term dropped out by Eq. 1.106 We now put these
terms back into the original equation to yield the vorticity equation.

𝜕
⇀
𝜔

𝜕𝑡
+ (

⇀

𝑉 · ∇)⇀
𝜔︸            ︷︷            ︸

𝐷
⇀
𝜔/𝐷𝑡

= (⇀
𝜔 · ∇)

⇀

𝑉︸    ︷︷    ︸
vortex stretching

and tilting

− ⇀
𝜔(∇ ·

⇀

𝑉)︸    ︷︷    ︸
vortex stretching

due to
compressibility

+ 1
𝜌2 ∇𝜌 × ∇𝑝︸        ︷︷        ︸
baroclinic term

+ ∇ ×
(

1
𝜌
∇ · 𝜏

)
︸          ︷︷          ︸
vorticity diffusion
due to viscosity

(1.116)

The baroclinic term is zero if density is constant, if the fluid is incom-
pressible and homogenous, or if density is only a function of pressure,
which is called a barotropic fluid and includes many liquids. For these
cases, the vorticity equation simplifies to:

𝐷
⇀
𝜔

𝐷𝑡
= (⇀

𝜔 · ∇)
⇀

𝑉 + 𝜈∇2 ⇀
𝜔 (1.117)

The first term on the right hand side is nonzero when the vorticity
is stretched or tilted. The last term, is the vorticity diffusion due to
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Fig. 1.19 An inertial frame and a ro-
tating reference frame.

*This is shown in any dynamics textbook.
It is straightforward to derive from draw-
ing out the geometry.

viscosity. It is perhaps more easily understood by comparing to the
heat diffusivity equation:

𝑑𝑇

𝑑𝑡
= 𝑘∇2𝑇 (1.118)

where 𝑇 is temperature and 𝑘 is the heat diffusivity. These equation
describes how temperature spreads based on the heat diffusivity. This
term in the vorticity equation has the same form, describing how
vorticity spreads based on the viscosity.

1.10 Rotating Reference Frame

Fluid moving in a rotating reference frame introduces additional ap-
parent forces. Imagine an inertial frame defined by the Cartesian
coordinates 𝑖 , 𝑗 , 𝑘, and a second rotating frame, rotating at some speed
Ω relative to the inertial frame, defined by the Cartesian coordinates
𝑥̂ , 𝑦̂ , 𝑧̂ (Fig. 1.19). We use the subscript 𝐼 to refer to quantities measured
relative to the inertial frame, and subscript 𝑅 for quantities measured
relative to the rotating frame. Then, from the perspective of the inertial
frame, 𝑖 is fixed. Mathematically this is expressed as:(

𝑑𝑖

𝑑𝑡

)
𝐼

= 0 (1.119)

Similarly, from the perspective of the rotating frame, 𝑥̂ is fixed.(
𝑑𝑥̂

𝑑𝑡

)
𝑅

= 0 (1.120)

However, from the perspective of the inertial frame 𝑥̂ is not fixed, it is
rotating, and so its time derivative is not zero. We can show that this
derivative is given by:* (

𝑑𝑥̂

𝑑𝑡

)
𝐼

=
⇀

Ω × 𝑥̂ (1.121)

With that result, let us consider a position vector ⇀
𝑟 = 𝑥𝑥̂ + 𝑦𝑦̂ + 𝑧𝑧̂,

which indicates the position of some fluid particle. We have chosen to
represent the vector in the basis of the rotating coordinate frame, but
it is the same vector for both frames (we are assuming the origins are
coincident for this case). If we take derivatives in our rotating frame
then we have: (

𝑑
⇀
𝑟

𝑑𝑡

)
𝑅

= ¤𝑥𝑥̂ + ¤𝑦𝑦̂ + ¤𝑧𝑧̂ (1.122)

where the dot superscript indicates a time derivative (note that the
unit vectors are fixed in this frame so the result is straightforward).
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These derivatives ( ¤𝑥, ¤𝑦, ¤𝑧) are unambiguous quantities because they are
scalars and so are the same in any reference frame.

Let’s now repeat the same derivative, but take derivatives in the
inertial reference frame. Because the unit vectors 𝑥̂ , 𝑦̂ , 𝑧̂ are not fixed in
this reference frame, we have additional terms from the chain rule.(

𝑑
⇀
𝑟

𝑑𝑡

)
𝐼

= ¤𝑥𝑥̂ + 𝑥
(
𝑑𝑥̂

𝑑𝑡

)
𝐼

+ ¤𝑦𝑦̂ + 𝑦
(
𝑑𝑦̂

𝑑𝑡

)
𝐼

+ ¤𝑧𝑧̂ + 𝑧
(
𝑑𝑧̂

𝑑𝑡

)
𝐼

= ¤𝑥𝑥̂ + 𝑥(
⇀

Ω × 𝑥̂) + ¤𝑦𝑦̂ + 𝑦(
⇀

Ω × 𝑦̂) + ¤𝑧𝑧̂ + 𝑧(
⇀

Ω × 𝑧̂)

=

(
𝑑
⇀
𝑟

𝑑𝑡

)
𝑅

+
⇀

Ω × ⇀
𝑟

(1.123)

Since the time derivative of position is velocity ⇀
𝑣, we can write this

more succinctly as:
⇀
𝑣𝐼 =

⇀
𝑣𝑅 +

⇀

Ω × ⇀
𝑟 (1.124)

Thus, we the velocity we measure in the relative frame needs to modified
with an addition term to represent an inertial velocity.

We now repeat the process once more to determine accelerations.
Note that Eq. 1.123 provides a general rule for any vector:(

𝑑□
𝑑𝑡

)
𝐼

=

(
𝑑□
𝑑𝑡

)
𝑅

+
⇀

Ω ×□ (1.125)

where □ is any vector. We now take derivatives of Eq. 1.123:(
𝑑2⇀
𝑟

𝑑𝑡2

)
𝐼

=
𝑑

𝑑𝑡 𝐼

(
𝑑
⇀
𝑟

𝑑𝑡

)
𝑅

+ 𝑑
⇀

Ω

𝑑𝑡 𝐼
× ⇀
𝑟 +

⇀

Ω ×
(
𝑑
⇀
𝑟

𝑑𝑡

)
𝐼

(1.126)

We expand the first term using Eq. 1.125

⇀
𝑎𝐼 =

(
𝑑2⇀
𝑟

𝑑𝑡2

)
𝑅

+
⇀

Ω ×
(
𝑑
⇀
𝑟

𝑑𝑡

)
𝑅

+ 𝑑
⇀

Ω

𝑑𝑡 𝐼
× ⇀
𝑟 +

⇀

Ω ×
(
𝑑
⇀
𝑟

𝑑𝑡

)
𝐼

(1.127)

We recognize the first term as ⇀
𝑎𝑅, the acceleration as measured in the

relative frame. For the third term
⇀

Ω is already defined in the inertial
frame so the derivative is straightforward.

⇀
𝑎𝐼 =

⇀
𝑎𝑅 +

⇀

Ω ×
(
𝑑
⇀
𝑟

𝑑𝑡

)
𝑅

+ ¤⇀
Ω × ⇀

𝑟 +
⇀

Ω ×
(
𝑑
⇀
𝑟

𝑑𝑡

)
𝐼

(1.128)

We now expand the last term using Eq. 1.123:

⇀
𝑎𝐼 =

⇀
𝑎𝑅 +

⇀

Ω ×
(
𝑑
⇀
𝑟

𝑑𝑡

)
𝑅

+ ¤⇀
Ω × ⇀

𝑟 +
⇀

Ω ×
(
𝑑
⇀
𝑟

𝑑𝑡

)
𝑅

+
⇀

Ω × (
⇀

Ω × ⇀
𝑟) (1.129)
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The second and fourth term are identical and so can be summed. If
the rotation occurs at a constant rate, then the third term is zero. This
leaves us with:

⇀
𝑎𝐼 =

⇀
𝑎𝑅 + 2

⇀

Ω × ⇀
𝑣𝑅 +

⇀

Ω × (
⇀

Ω × ⇀
𝑟) (1.130)

We now see that, because of rotation, the acceleration as seen in the
inertial frame differs from that of that in the rotating frame with two
new terms (the dropped term should be reinserted if the rotation rate is
not constant). The second term is called the Coriolis acceleration, and
the third term is the centripetal acceleration.

We can insert these accelerations as apparent forces (per unit mass)
in the momentum equation (Eq. 1.84), with a negative sign since force
appears on the opposite of acceleration in the momentum equation.
The result is:

𝐷
⇀

𝑉

𝐷𝑡
= − 1

𝜌
∇𝑝 + 1

𝜌
∇· ↔𝜏 − 2

⇀

Ω ×
⇀

𝑉︸  ︷︷  ︸
Coriolis

−
⇀

Ω × (
⇀

Ω × ⇀
𝑟)︸        ︷︷        ︸

centripetal

(1.131)

Even though all fluid motion on the Earth is in a rotating frame,
these last two terms are generally negligible. One notable exception is
some large-scale atmospheric flows. There are also scenarios, within
a boundary layer, where the flow speeds are slow enough that even
though these extra forces are small their impact is important. One such
case is discussed in Section 6.3.1.

1.11 Far Field Forces

In Section 1.7 we developed both integral and differential forms of
the governing equations. In this section we are going to apply the
integral form to yield some key insights. As discussed, if we want
to determine the forces and moments on a body, we need to find the
pressure and shear stress all along the body and integrate. In this
section, we will see that there is an alternative approach. Through
a control volume analysis we can determine the forces on a body by
integrating in the far-field. This is a useful result that is the basis of
some wind tunnel measurement techniques, and is directly used in
several theorems related to the lift and drag of bodies as we will see.
Generally, we can shortcut some of the steps shown in this analysis, but
we will be fully rigorous this first time.

Consider, a body with a control volume as shown in Fig. 1.20. The
outer surface is far away from the body. The figure is not two control
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volumes (one around the body and one in the far field), but rather one
control volume, which we have created by making a small cut to allow a
continuous shape that wraps around the body from the far field control
volume. In other words, as defined, the control volume contains only
fluid (not the body).

Sinner

Scut

Souter

Fig. 1.20 A control volume with a
branch cut so that the volume con-
tains only fluid on the interior.

We now apply the integral form of the momentum equation to this
control volume. The standard equation is shown below, but in this case
we will assume the flow is steady so the time dependent term drops off.

���
���𝜕

𝜕𝑡

∫
–𝑉
𝜌

⇀

𝑉𝑑–𝑉 +
∫
𝐴

𝜌
⇀

𝑉
(
⇀

𝑉 · 𝑑
⇀

𝐴
)
= −

∫
𝐴

𝑝𝑑
⇀

𝐴 +
∫
𝐴

↔
𝜏 ·𝑑

⇀

𝐴 (1.132)

All of the remaining integrals are only surface integrals so we combine
them into one integral and we redefine 𝑑

⇀

𝐴 as 𝑛̂𝑑𝐴 for convenience.
By convention the surface normal always points “out” of the control
volume: ∫

𝐴

(
𝜌

⇀

𝑉
(
⇀

𝑉 · 𝑛̂
)
+ 𝑝𝑛̂− ↔

𝜏 𝑛̂
)
𝑑𝐴 = 0 (1.133)

Next, we divide the surface integration into three parts: integra-
tion along the inner surface, integration along the outer surface, and
integration along the cut surface. The integration along the cut surface
will go to zero. The reason is that the velocity and pressure must vary
continuously and so we be identical on either side of the cut. However,
the unit normal 𝑛̂ will change sign from one side of the cut to the other
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and so the sum of those integrals will cancel:∫
𝑆inner

( )𝑑𝐴 +
∫
𝑆outer

( )𝑑𝐴 +
���

��
∫
𝑆cut

( )𝑑𝐴 = 0 (1.134)

Let’s look at the remaining terms. For the inner surface 𝑉̂ · 𝑛̂ must be
zero since fluid cannot pass through the body (and the control volume
is right against the body). This is called the no flow through condition,
which is true for a solid body whether the flow is viscous or inviscid
(no slip occurs only for viscous flows).∫

𝑆inner

(
�
����

𝜌
⇀

𝑉
(
⇀

𝑉 · 𝑛̂
)
+ 𝑝𝑛̂− ↔

𝜏 𝑛̂

)
𝑑𝐴 (1.135)

What remains is the the definition for the body force (i.e., the integral
of pressure and shear stress over the body is the force that acts on the
body): ∫

𝑆inner

(
𝑝𝑛̂− ↔

𝜏 𝑛̂
)
𝑑𝐴 =

⇀

𝐹𝑏 (1.136)

This integral represents the force on the fluid, but usually we care about
the force of the fluid on the body. Thus, we would need a negative
sign. However, because of the way we have defined our control volume,
“out” for the control volume points into the body. This is opposite of
our convention for positive pressures. Thus, we need another negative
sign and so the two signs cancel out.

For the outer surface we are far enough away from the body that
any shear stresses would be negligible.∫

𝑆outer

(
𝜌

⇀

𝑉
(
⇀

𝑉 · 𝑛̂
)
+ 𝑝𝑛̂ −�

�↔
𝜏 𝑛̂

)
𝑑𝐴 (1.137)

If we put this all together we are left with:

⇀

𝐹𝑏 = −
∫
𝑆outer

(
𝜌

⇀

𝑉
(
⇀

𝑉 · 𝑛̂
)
+ 𝑝𝑛̂

)
𝑑𝐴 (1.138)

This is a significant result! It means that we can determine the forces
on the body just by measuring velocities and pressures in a domain sur-
rounding the body. Furthermore, if the outer boundary is unconfined
(e.g., not in a wind tunnel) then the pressure term also goes to zero and
we only need the velocity term.

Now that we’ve done it rigorously we note that you will get the
exact same result if just use one outer control volume with no cut. In
this case, the body force is an internal force acting in the control volume
that we need to include with the other forces (pressure and shear stress).



1 Fundamentals 32

We will also need to include a negative sign because the equation uses
the force of the body on the fluid and 𝐹𝑏 is the force of the fluid on the
body. This approach is easier, and one will shortcut to from now on.
However, it is worth rigorously justifying that we can include a body
in a control volume when all the governing equations are for the fluid
only.



2Potential Flow

Potential flow is an extremely useful theory for low-speed aerodynamics,
and forms the basis of panel methods widely used in many conceptual
design studies.

2.1 Irrotational Flow

To begin, we will need a few more definitions. The equation below
defines circulation:

Γ =

∮
⇀

𝑉 · 𝑑
⇀

𝑙 =

∫
𝑆

(
∇ ×

⇀

𝑉
)
· 𝑑

⇀

𝐴 (2.1)

The integral on the left is a contour integral, and the one on the right is
a transformed version using Stoke’s theorem (Eq. 1.26). Referring to
Fig. 2.1, the circulation in contour A is zero, whereas the circulation in
contour B is proportional to the lift generated by the airfoil. Circulation
is a concept that, roughly speaking, measures the rotation of the flow.
This is also suggested by the second form of the integral that shows
that circulation is related to the curl of the velocity field (which is
proportional to rotation).

Fig. 2.1 Circulation is defined from a
contour integral.

Recall the definition for vorticity:
⇀
𝜔 = ∇ ×

⇀

𝑉 (2.2)

We call a flow field irrotational if:

∇ ×
⇀

𝑉 = 0 (2.3)

33
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It is convenient to identify flow situations that can be approximated
as irrotational. One reason is that if the above equation is true we can
always represent the velocity field as a scalar potential function 𝜙:

⇀

𝑉 = ∇𝜙 (2.4)

That is because the curl of any gradient is always zero (a vector identity):

∇ × ∇𝜙 = 0 (2.5)

One significance of this form is that 𝜙 is a scalar and so it simplifies
our representation from a three-dimensional velocity field to a one-
dimensional scalar function.

A flow field is irrotational if the upstream flow is irrotational and
the flow field is inviscid (shear stresses introduce rotation/vorticity).
An irrotational flow field can only have conservative forces, like gravity,
and not nonconservative ones like those arising from viscosity. In other
words, an irrotational flow field is inviscid. However, the opposite is not
necessarily true. One can have an inviscid flow field that is rotational.

Perhaps the most useful reason for identifying an irrotational flow
occurs if the flow is both irrotational and incompressible. Recall that
for an incompressible flow continuity requires that:

∇ ·
⇀

𝑉 = 0 (2.6)

If we now substitutue in the vector potential for irrotational flow (Eq. 2.4)
we have:

∇ · ∇𝜙 =0 (2.7)

or
∇2𝜙 = 0 (2.8)

This is Laplace’s equation. In Cartesian coordinates this equations is
expressed as:

𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑦2 +
𝜕2𝜙

𝜕𝑧2 = 0 (2.9)

It is a very useful equation that shows up in multiple applications.
We could solve Laplace’s equation on a grid in a similar (but much
simpler) manner to what is done with computational fluid dynamics
(discussed in Chapter 7). However, that isn’t necessary. The reason
why it is so useful is that it is a linear PDE. That means that if we
have two vector fields that satisfy Laplace’s equation, then their sum
also satisfies Laplace’s equation (the principle of superposition). There



2 Potential Flow 35

are many known solutions to Laplace’s equation that are relevant to
flow fields. This means that we can build up complex flow fields
from simple vector fields that are known solutions to the governing
equations. In this manner we can, for example, analyze the flow over
a complicated aircraft shape, using a superposition of known vector
field solutions by adjusting their strengths appropriately to satisfy the
boundary conditions. This is the basis of panel methods that are widely
used in applied aerodynamics.

Note that the above derivation only needed to assume that the flow
was incompressible and irrotational. It applies in 2D and 3D and for
both steady and unsteady flows.

2.2 Potential Flow

The governing equation for potential flow is Laplace’s equation.

∇2𝜙 = 0 (2.10)

Recall that the two main assumptions to this equation were incom-
pressible and irrotational flow. For aerodynamics an incompressible
flow occurs for low Mach numbers, approximately less than 𝑀 = 0.3.
Viscosity always introduces rotation (except in some contrived cases),
whereas an inviscid flow does not. Thus, we need an inviscid flow
in order for it to be irrotational. That is a necessary but not sufficient
condition. However, if the flow starts irrotational, and the fluid is
inviscid, then it will remain irrotational. For many aerodynamic cases
we have a constant freestream (which is irrotational) and so outside
of the boundary layer the flow field will be irrotational. So while
the assumptions of incompressible and irrotational flow seem rather
restrictive, there are still a useful approximation for many aerodynamic
applications: namely low-speed flows outside of the boundary layer.
As we will learn later, we can actual extend the methods into flow fields
that are moderately compressibile, meaning the methods are useful
even up to low transonic Mach numbers.

2.2.1 Stream Function

There is an alternative way to come to the same governing equations
using stream functions. By construction, a streamline automatically
satisfies continuity for an incompressible flow. The incompressible
continuity equation (Eq. 1.74) in 2D is:

𝜕𝑢

𝜕𝑥
+ 𝜕𝑣

𝜕𝑦
= 0 (2.11)
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If we define:

𝑢 =
𝜕𝜓

𝜕𝑦
(2.12)

𝑣 = −𝜕𝜓

𝜕𝑥
(2.13)

for some stream function 𝜓 then we automatically satisfy the above
equation since the mixed partials must be equal. A stream function has
its name because lines of constant 𝜓 (contour lines) are streamlines.

If we then add the restriction of irrotationality (Eq. 2.3)

𝜕𝑣

𝜕𝑥
− 𝜕𝑢

𝜕𝑦
= 0 ⇒ 𝜕2𝜓

𝜕𝑥2 + 𝜕2𝜓

𝜕𝑦2 = 0 , (2.14)

then we obtain Laplace’s equation.
In other words, the potential formulation automatically satisfies

irrotationality (
⇀

𝑉 = ∇𝜙) and we impose continuity to get Laplace’s
equation. The stream function does the opposite. It automatically
satisfies continuity and we impose irrotationality to get Laplace’s
equation. The downside of the stream function approach is that, as
outlined, it only works in 2D. Describing three-dimensional flows
requires two stream functions. The potential form automatically works
in 3D, and is simpler with just one function so is widely used.

The main usefulness of introducing the stream function is to note
that both the potential and stream functions satisfy the Cauchy Riemann
equations (used frequently in complex analysis):

𝜕𝜙

𝜕𝑥
=

𝜕𝜓

𝜕𝑦
(2.15)

𝜕𝜙

𝜕𝑦
= −

𝜕𝜓

𝜕𝑥
(2.16)

This means that potential lines and streamlines are orthogonal (see
Fig. 2.2):

∇𝜙 · ∇𝜓 =
𝜕𝜙

𝜕𝑥

𝜕𝜓

𝜕𝑥
+

𝜕𝜙

𝜕𝑦

𝜕𝜓

𝜕𝑦
(2.17)

=
𝜕𝜙

𝜕𝑥

(
−
𝜕𝜙

𝜕𝑦

)
+

𝜕𝜙

𝜕𝑦

𝜕𝜙

𝜕𝑥
(2.18)

= 0 (2.19)

This concept helps us to attribute physical significance to potential lines.
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Fig. 2.2 Streamlines in black and po-
tential lines in white are always or-
thogonal in 2D. By Incredio, CC BY-
SA 3.0, Wikimedia Commons.

Fig. 2.3 Uniform flow.

Fig. 2.4 Source/sink.

2.2.2 Elementary Solutions to Laplace’s Equation

There are various known elementary solutions to Laplace’s equation.
As discussed in the previous section, these elementary solutions are
particularly useful because the governing equation is linear. Thus,
we will use distributions of elementary solutions, and solve for their
strengths to satisfy requisite boundary conditions. There are four
main elementary solutions that are used. The first is uniform flow
(Fig. 2.3), which has the following potential function, stream function,
and velocity components.

𝜙 = 𝑉 cos(𝛼𝑥) +𝑉 sin(𝛼𝑦) (2.20)
𝜓 = −𝑉 sin(𝛼𝑥) +𝑉 cos(𝛼𝑦) (2.21)
𝑉𝑥 = 𝑉 cos(𝛼) (2.22)
𝑉𝑦 = 𝑉 sin(𝛼) (2.23)

The next solution is called a source, or if its strength is negative, it is
called a sink. In a source/sink all the flow is radial (Fig. 2.4). In terms

https://commons.wikimedia.org/w/index.php?curid=7604722
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Fig. 2.5 A point vortex (with negative
circulation).

Fig. 2.6 A doublet.

*If we add a sink downstream then a closed
oval is created.

†Another common example is uniform
flow plus a doublet, which creates flow
around a cylinder. This is a good exercise
to implement on your own in a numeri-
cal simulation. Adjust the strength of the
doublet and observe the behavior.

of potential/stream functions and velocity components it is defined as:

𝜙 =
Λ

2𝜋 ln(𝑟) (2.24)

𝜓 =
Λ

2𝜋𝜃 (2.25)

𝑉𝑟 =
Λ

2𝜋𝑟 (2.26)

𝑉𝜃 = 0 (2.27)

The next solution is called a vortex, and it produces only tangential
flow (Fig. 2.5). Its mathematical description is:

𝜙 = − Γ

2𝜋𝜃 (2.28)

𝜓 =
Γ

2𝜋 ln(𝑟) (2.29)

𝑉𝑟 = 0 (2.30)

𝑉𝜃 = − Γ

2𝜋𝑟 (2.31)

Those are all the first-order singularities. A commonly-used second
order singularity is a doublet, which could be thought of as a source
and a sink brought infinitely close together (Fig. 2.6). Its mathematical
description is:

𝜙 =
𝜅 cos(𝜃)

2𝜋𝑟 (2.32)

𝜓 = −𝜅 sin(𝜃)
2𝜋𝑟 (2.33)

𝑉𝑟 = −𝜅 cos(𝜃)
2𝜋𝑟2 (2.34)

𝑉𝜃 = −𝜅 sin(𝜃)
2𝜋𝑟2 (2.35)

Note that Λ, Γ, and 𝜅 refer to the strength of the source/sink, vortex,
and doublet respectively.

As a simple example of superposition, combining uniform flow
and a source yields a shape called the Rankine oval (Fig. 2.7).* By
combining these two singularities there exists a stagnation streamline.
If we replaced the stagnation streamline with a solid body, the outer
flow represents the flow around a body with the shape of a Rankine oval
(for incompressible/inviscid flow.† The inner flow is not meaningful.
Through an an appropriate choice of singularities and their strengths,
we can potentially represent the flow around any arbitrary body as will
be discussed later in this chapter.
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Fig. 2.7 A Rankine oval form by the
superposition of uniform flow and
source.

‡The behavior of wake vortices is reviewed
in more detail in Chapter 4

Fig. 2.8 A wing in ground effect sim-
ulated by a set of mirror vortices.

*Historically this led to some difficulty
between mathematicians and engineers.

†A topic discussed in more detail in Chap-
ter 3.

A simple way these solutions are used to represent solid surfaces,
is to simulate flow near the ground, or to simulate ground effect. For
example, a lifting body will a pair of counter-rotating vortices as shown
on the top of Fig. 2.8.‡. In order to represent the fluid behavior of a
wing near the ground, we produce mirror vortices, which are vortices on
the other side of the ground, the same distance away, with circulation
in the opposite direction (e.g., like a mirror). This is a useful trick
as the combination of induced velocities creates a no-flow-through
condition at the ground. In other words, in the same way we can
use these singularities to represent flow around a body, we can use
them to simulate flow near the ground. This simple model can help us
understand what happens to a lifting body near the ground. Notice
that the mirror vortices induce an upwash on the body. This is a real
effect, that aircraft flying near the ground can reduce the amount of lift
they need to produce and thus reduce their drag. Birds sometimes take
advantage of this effect. This idea is sometimes used where a complex
body can be simulated near ground by mirroring all of the singularities
across the ground plane. However, the computational cost can be fairly
high as it doubles the number of singularities and this is an 𝑛-body
problem (the number of interactions between the singularities scales as
𝑛2).

2.3 D’Alembert’s Paradox and the Kutta-Joukowski Theorem

It turns out the in potential flow, the drag around any shape is always
zero. This is a somewhat puzzling outcome that is called D’Alembert’s
Paradox.* Even for cases when the predicted flow field is not symmetric
(like an oval or airfoil at an angle of attack), the integration of the
pressures to compute drag always sums to zero. The problem is that for
geometries with rapid changes, like around the back end of an airfoil
at an angle of attack, unrealistic flow fields are predicted (Fig. 2.9).
This is because without viscosity, infinite pressure gradients can be
supported, and thus rapid changes in direction will occur. However, this
mathematical solution is unstable. Even a tiny amount of viscosity will
make such rapid changes impossible leading to flow separation.† The
potential flow solutions actually admit an infinite number of solutions.
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Fig. 2.9 Illustration of flow around air-
foil predicted by potential flow (left),
and the actual flow field (right).

In order for potential flow to produce useful solutions we will need to
add an addition condition, to force a physically meaningful solution, a
criteria that will be expanded upon later (Section 2.5.6).

The Kutta-Joukowsi theorem relates circulation to the force gener-
ated, which by definition is lift (perpendicular). As a corollary this
equation predicts that the drag is zero for 2D incompressible, inviscid
flow (D’Alembert’s paradox).

⇀

𝐿 = 𝜌∞
⇀

𝑉 ×
⇀

Γ (2.36)

Fig. 2.10 The Kutta Joukowski theo-
rem defines the direction of the lift
force based on the incoming velocity
and the circulation.

2.4 Pressure Coefficient for Incompressible Flow

The Bernoulli equation can be derived either from the momentum
equation or the conservation of mechanical energy equation.

𝑝 + 1
2𝜌𝑉

2 = constant (2.37)

It is a redundant equation as we already have four equations and four
unknowns, but is often convenient. The large number of assumption-
s/limitations required to use the equation should be kept in mind:
applies only along a streamline, flow must be steady, inviscid, and
incompressible, and there cannot be any work or heat transfer along
the streamline.

The main reason to bring it up at this point, is that for an irrotational
flow Bernoulli’s equation applies not just along a streamline, but can
apply between any two points in the flow (assuming no work or heat
transfer). Equating between any two arbitrary points greatly extends
the utility of the equation.
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The pressure coefficient was introduced earlier, but is defined as:

𝐶𝑝 =
𝑝 − 𝑝∞
1
2𝜌𝑉

2
∞

(2.38)

For an incompressible, irrotational flow we can simplify by using
Bernoulli’s equation:

𝑝∞ + 1
2𝜌𝑉

2
∞ = 𝑝 + 1

2𝜌𝑉
2 (2.39)

𝑝 − 𝑝∞ =
1
2𝜌𝑉

2
∞ − 1

2𝜌𝑉
2 (2.40)

Substituting into the pressure coefficient definition results in:

𝐶𝑝 = 1 −
(
𝑉

𝑉∞

)2
(2.41)

Thus, at a stagnation point (for an incompresible, irrotational flow)
𝐶𝑝 = 1.

2.5 Thin Airfoil Theory

In an introductory aerodynamics text you may have learned that you
can combine various point singularities to form interesting flows. For
example, freestream + source + sink can be used to create a Rankine
oval, whereas freestream + doublet can be used to create a cylinder
and freestream + doublet + vortex can create a lifting cylinder. While
interesting, we would like to be able to predict flow fields around
arbitrary geometries. Thus, we are interested in the inverse problem:
given a geometry what should be the strengths and positions of the
singularities in order to create a flow field around the geometry? Thin
airfoil theory is the first method we will explore with this goal in
mind. Thin airfoil theory requires some simplifying assumptions but
in return allows for some analytic solutions. With modern computing
capabilities, thin airfoil theory has been replaced by more general
approaches like panel methods, which we’ll discuss afterwords. But,
the insights that analytic solutions provide are still useful.

2.5.1 Airfoil

For convenience we will align our airfoil along the 𝑥 axis, and separate
the upper and lower surfaces on either side of this chord line (Fig. 2.11).
The thickness distribution is then given by:

𝑡(𝑥) = 𝑦𝑢(𝑥) − 𝑦𝑙(𝑥) (2.42)
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Fig. 2.12 Source line distribution
along the chord line.

and the camber distribution is:

𝑦̄(𝑥) = 1
2 (𝑦𝑢(𝑥) + 𝑦𝑙(𝑥)) (2.43)

Fig. 2.11 Definitions of upper and
lower surfaces, leading and trailing
edges, and the chord length 𝑐.

When we refer to thickness or camber we generally mean the
maximum thickness or camber (normalized by chord):

thickness: 𝑡
𝑐
= 𝜏 =

max [𝑡(𝑥)]
𝑐

(2.44)

camber:
max [𝑦̄(𝑥)]

𝑐
(2.45)

2.5.2 Line Distributions

Recall that one of the key ideas of potential flow is that we can use
superposition because the governing equation is linear. We will divide
the total potential function into three parts: a component for the
freestream, a component for airfoil thickness, and a component for
airfoil camber.

𝜙 = 𝜙∞ + 𝜙𝑡 + 𝜙𝑐 (2.46)

Representing the freestream component is straightforward as a known
elementary solution to potential flow:

𝜙∞ = 𝑉∞ cos(𝛼𝑥) +𝑉∞ sin(𝛼𝑦) (2.47)

Next, we wish to model a thick airfoil (with no camber). Motivated
by some of the basic solutions (e.g., Rankine oval), sources seem like a
natural fit to model the thickness distribution of an airfoil. However,
we would like to model any airfoil shape and so rather than use a few
discrete sources we will use an infinite number of infinitely weak sources.
This is the same concept as used in statics, where, as an alternative to
discrete forces you use distributed loads that represent the force per
unit length. In this case we will use a source line distribution along
the airfoil chord line where 𝑞(𝑠) represents the source strength per unit
length (Fig. 2.12).

Before considering the distribution of sources, let’s first consider a
point source (Fig. 2.13). From introductory aerodynamics recall that a
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Fig. 2.13 A point source.

Fig. 2.14 Conversion from polar to
cartesian coordinates in describing
relative position of evaluation point
and the source.

point source creates only radial velocity and has the following potential
function:

𝜙 =
Λ

2𝜋 ln(𝑟) (2.48)

𝑉𝑟 =
Λ

2𝜋𝑟 (2.49)

where Λ is the strength of the source and 𝑟 is the radial distance from
the center of the source. Since our airfoil is defined in a cartesian
coordinate system we will decompose the radial velocity into 𝑥 and 𝑦

components:

𝑢 =
Λ cos𝜃

2𝜋𝑟 (2.50)

𝑣 =
Λ sin𝜃

2𝜋𝑟 (2.51)

Now for the line distribution the strength for some infinitesimal
length 𝑑𝑠 is 𝑑Λ = 𝑞𝑑𝑠. We can express the potential function as an
integral along this distribution.

𝜙 =
1

2𝜋

∫ 𝑐

0
𝑞(𝑠) ln 𝑟𝑑𝑠 (2.52)

For the velocities, we would like to convert to cartesian coordinates.
The vector 𝑟 is the vector from the infinitesimal source to the evaluation
point. While the evaluation point is fixed, the local source location 𝑠
changes as we integrate across the line (see Fig. 2.14). The velocity at
some point 𝑥, 𝑦 from the contributions of the total line distribution is
(using cos𝜃 = (𝑥 − 𝑠)/𝑟 and sin𝜃 = 𝑦/𝑟):

𝑢(𝑥, 𝑦) = 1
2𝜋

∫ 𝑐

0
𝑞(𝑠) 𝑥 − 𝑠

(𝑥 − 𝑠)2 + 𝑦2 𝑑𝑠 (2.53)

𝑣(𝑥, 𝑦) = 1
2𝜋

∫ 𝑐

0
𝑞(𝑠) 𝑦

(𝑥 − 𝑠)2 + 𝑦2 𝑑𝑠 (2.54)

As the evaluation crosses the velocity sheet (𝑦 → 0) the velocity 𝑢 is
continuous but 𝑣 is discontinuous. This should make sense conceptually
as we consider the nature of sources.

Next, we need to model the camber line of the airfoil. From
introductory aerodynamics we find that vortices can be used to create
lift, so a vortex line seems a natural choice. The procedure is much the
same.

First, recall the potential and velocities for a point vortex (Fig. 2.15).

𝜙 = − Γ

2𝜋𝜃 (2.55)

𝑉𝜃 = − Γ

2𝜋𝑟 (2.56)
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Fig. 2.15 A point vortex.

Fig. 2.16 A line vortex distribution
along the chord line.

Fig. 2.17 Illustration of flow tangency
condition.

where Γ is the point vortex length. We again break the tangential
velocity into 𝑥 and 𝑦 components:

𝑢 =
Γ sin𝜃

2𝜋𝑟 (2.57)

𝑣 = −Γ cos𝜃
2𝜋𝑟 (2.58)

We now consider a line of vortices with strength per unit length
𝛾 (Fig. 2.16). That means the vortex strength per some length 𝑑𝑠 is
𝑑Γ = 𝛾𝑑𝑠. We can express the potential function as an integral along
this distribution.

𝜙 = − 1
2𝜋

∫ 𝑐

0
𝛾(𝑠)𝜃𝑑𝑠 (2.59)

The velocities induced from the vortex distribution look similar to
those from the source distribution:

𝑢(𝑥, 𝑦) = 1
2𝜋

∫ 𝑐

0
𝛾(𝑠) 𝑦

(𝑥 − 𝑠)2 + 𝑦2 𝑑𝑠 (2.60)

𝑣(𝑥, 𝑦) = − 1
2𝜋

∫ 𝑐

0
𝛾(𝑠) 𝑥 − 𝑠

(𝑥 − 𝑠)2 + 𝑦2 𝑑𝑠 (2.61)

As we cross the velocity sheet (𝑦 → 0) the velocity 𝑣 is continuous
but 𝑢 is discontinuous. This should also make sense as you consider
the nature of vortices.

2.5.3 Boundary Conditions

We now have a model, but need a way to solve for the unknown
distributions 𝑞(𝑠) and 𝛾(𝑠) that will produce the desired flow field
around an arbitrary airfoil shape. To do this we need to impose the
boundary conditions.

The first boundary condition is that the induced velocity must go to
zero in the farfield. This boundary condition is automatically satisfied
by the choice of singularities (sources and vortices). The other boundary
condition we need to satisfy is flow tangency. We require that the total
velocity vector is tangent to the airfoil surface, or in other words that
the normal component of velocity is zero (no flow-through condition).
Mathematically we can say that the slope of the airfoil is related to the
local velocity as (Fig. 2.17):

𝑣

𝑢
=
𝑑𝑦

𝑑𝑥
(2.62)
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Using the airfoil coordinate system we established earlier we can
write the two surfaces as:

𝑦𝑢(𝑥) = 𝑦̄(𝑥) + 1
2 𝑡(𝑥) (2.63)

𝑦𝑙(𝑥) = 𝑦̄(𝑥) − 1
2 𝑡(𝑥) (2.64)

Substituting these expressions into our flow tangency condition yields:

𝑣

𝑢
=
𝑑𝑦

𝑑𝑥
=
𝑑𝑦̄

𝑑𝑥
± 1

2
𝑑𝑡

𝑑𝑥
(2.65)

Using our decomposition, we can write the velocity components as:

𝑢 = 𝑉∞ cos 𝛼 + 𝑢𝑡 + 𝑢𝑐 (2.66)
𝑣 = 𝑉∞ sin 𝛼 + 𝑣𝑡 + 𝑣𝑐 (2.67)

The resulting boundary condition is then:

𝑉∞ sin 𝛼 + 𝑣𝑡 + 𝑣𝑐
𝑉∞ cos 𝛼 + 𝑢𝑡 + 𝑢𝑐

=
𝑑𝑦̄

𝑑𝑥
± 1

2
𝑑𝑡

𝑑𝑥
(2.68)

In order to provide this condition in a form that we can solve
analytically three simplifications are made. All of these assumptions
are based on small disturbances, or in other words that the the airfoil
is thin, and with a small angle of attack, thus the name thin airfoil
theory. The first assumption is that 𝛼 is small enough to where we can
approximately sin 𝛼 ≈ 𝛼 and cos 𝛼 ≈ 1. This assumption is actually not
necessarily to solve the equations analytically, but is conventionally done,
simplifies the equations, and is consistent with the other assumptions
and so it used here:

𝑉∞𝛼 + 𝑣𝑡 + 𝑣𝑐
𝑉∞ + 𝑢𝑡 + 𝑢𝑐

=
𝑑𝑦̄

𝑑𝑥
± 1

2
𝑑𝑡

𝑑𝑥
(2.69)

The second assumption is that the 𝑥-components of the induced
velocity are much smaller than the freestream velocity and so can be
neglected in the boundary condition.

𝑉∞𝛼 + 𝑣𝑡 + 𝑣𝑐
𝑉∞

=
𝑑𝑦̄

𝑑𝑥
± 1

2
𝑑𝑡

𝑑𝑥
(2.70)

The final simplification is to use the exact airfoil slope, but impose
the boundary condition at 𝑦 = ±0 rather than at the actual surface
(𝑦𝑢 , 𝑦𝑙). The resulting boundary condition is then:

(𝑣𝑡 + 𝑣𝑐)𝑦=±0 = 𝑉∞

(
𝑑𝑦̄

𝑑𝑥
± 1

2
𝑑𝑡

𝑑𝑥
− 𝛼

)
(2.71)
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Finally, since the sources were designed to address the thickness
distribution and the vortices the camber, we assume the former only
involves the thickness part of the boundary condition and the latter the
camber portion:

𝑣𝑡(𝑦 = 0) = ±𝑉∞
1
2
𝑑𝑡

𝑑𝑥
(2.72)

𝑣𝑐(𝑦 = 0) = 𝑉∞

(
𝑑𝑦̄

𝑑𝑥
− 𝛼

)
(2.73)

2.5.4 Induced Velocities

Let’s now work out the induced velocities from the sources and vortices.
Previously, we derived the induced velocity for a line of sources:

𝑢(𝑥, 𝑦) = 1
2𝜋

∫ 𝑐

0
𝑞(𝑠) 𝑥 − 𝑠

(𝑥 − 𝑠)2 + 𝑦2 𝑑𝑠 (2.74)

𝑣(𝑥, 𝑦) = 1
2𝜋

∫ 𝑐

0
𝑞(𝑠) 𝑦

(𝑥 − 𝑠)2 + 𝑦2 𝑑𝑠 (2.75)

but now we need to evaluate the integrals as 𝑦 → 0. The first, we can
evaluate directly, the second is less straightforward so we’ll leave in the
form of a limit for now.

𝑢𝑡(𝑥, 𝑦 → 0+) = 1
2𝜋

∫ 𝑐

0

𝑞(𝑠)
(𝑥 − 𝑠) 𝑑𝑠 (2.76)

𝑣𝑡(𝑥, 𝑦 → 0+) = 1
2𝜋 lim

𝑦→0+

∫ 𝑐

0
𝑞(𝑠) 𝑦

(𝑥 − 𝑠)2 + 𝑦2 𝑑𝑠 (2.77)

The second integral is zero everywhere except when 𝑥 = 𝑠. Thus,
𝑞(𝑠) becomes 𝑞(𝑥) and can come out of the integral. Additionally,
because the function is zero everywhere else we can extend the limits
of integration to −∞ to ∞ without changing the solution

𝑣𝑡(𝑥, 𝑦 → 0+) = 𝑞(𝑥)
2𝜋

∫ ∞

−∞

𝑦

(𝑥 − 𝑠)2 + 𝑦2 𝑑𝑠 (2.78)

We divide the top and bottom of the integrand by 𝑦2:

𝑣𝑡(𝑥, 𝑦 → 0+) = 𝑞(𝑥)
2𝜋

∫ ∞

−∞

1/𝑦(
𝑥−𝑠
𝑦

)2
+ 1

𝑑𝑠 (2.79)

We now introduce the change of variables 𝑧 = (𝑥 − 𝑠)/𝑦 and 𝑑𝑠 = −𝑦𝑑𝑧:

𝑣𝑡(𝑥, 𝑦 → 0+) =
𝑞(𝑥)
2𝜋

∫ −∞

∞

−1
(𝑧)2 + 1

𝑑𝑧 (2.80)
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or switching the limits of integration:

𝑣𝑡(𝑥, 𝑦 → 0+) = 𝑞(𝑥)
2𝜋

∫ ∞

−∞

1
(𝑧)2 + 1

𝑑𝑧 (2.81)

The integrand has a known solution:

𝑣𝑡(𝑥, 𝑦 → 0+) = 𝑞(𝑥)
2𝜋

[
tan−1 𝑧

]∞
−∞ (2.82)

Finally, evaluating the integral gives:

𝑣𝑡(𝑥, 𝑦 → 0+) = 𝑞(𝑥)
2 (2.83)

The solution is the same if we approach from 𝑦 → 0− except with a
negative sign. Thus we arrive at:

𝑣𝑡(𝑥, 𝑦 → ±0) = ±
𝑞(𝑥)

2 (2.84)

The vortex line has the same types of integral but reversed in order
for 𝑢 and 𝑣:

𝑢𝑐(𝑥, 𝑦 = 0) = ±𝛾(𝑥)
2

𝑣𝑐(𝑥, 𝑦 = 0) = − 1
2𝜋

∫ 𝑐

0

𝛾(𝑠)
𝑥 − 𝑠 𝑑𝑠

(2.85)

(2.86)

We can now plug these into the boundary conditions (Eqs. 2.72
and 2.73):

±
𝑞(𝑥)

2 = ±𝑉∞
1
2
𝑑𝑡

𝑑𝑥
(2.87)

− 1
2𝜋

∫ 𝑐

0

𝛾(𝑠)
𝑥 − 𝑠 𝑑𝑠 = 𝑉∞

(
𝑑𝑦̄

𝑑𝑥
− 𝛼

)
(2.88)

The first equation shows that we can determine the source distribu-
tion simply from the known airfoil thickness distribution:

𝑞(𝑥) = 𝑉∞
𝑑𝑡

𝑑𝑥
(2.89)

The vortex distribution is not as simple, and requires solving an integral
equation with a known angle of attack and camber distribution:

1
2𝜋

∫ 𝑐

0

𝛾(𝑠)
𝑥 − 𝑠 𝑑𝑠 = 𝑉∞

(
𝛼 −

𝑑𝑦̄

𝑑𝑥

)
(2.90)
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2.5.5 Symmetric Airfoil

The integral equation is easiest to solve if the airfoil is symmetric. For
a symmetric airfoil the camber is zero and so the integral equation
simplifies to: ∫ 𝑐

0

𝛾(𝑠)
𝑥 − 𝑠 𝑑𝑠 = 2𝜋𝑉∞𝛼 (2.91)

To solve this equation we will use a coordinate transformation. This
is a common coordinate transformation which transforms the airfoil
into cosine spacing:

𝑥 =
𝑐

2 (1 − cos𝜃) , 𝜃 = 0 . . .𝜋 (2.92)

𝑠 =
𝑐

2 (1 − cos 𝜙) (2.93)

𝑑𝑠 =
𝑐

2 sin 𝜙𝑑𝜙 (2.94)

With this transformation the integral becomes:∫ 𝜋

0

𝛾(𝜙) sin 𝜙

cos 𝜙 − cos𝜃 𝑑𝜙 = 2𝜋𝑉∞𝛼 (2.95)

A useful integral that we will use again later when we discuss finite
wing theory is: ∫ 𝜋

0

cos(𝑛𝜙)
cos 𝜙 − cos𝜃 𝑑𝜙 = 𝜋

sin(𝑛𝜃)
sin𝜃

(2.96)

For convenience, we enumerate two solutions below. For 𝑛 = 0:∫ 𝜋

0

1
cos 𝜙 − cos𝜃 𝑑𝜙 = 0 (2.97)

and for 𝑛 = 1: ∫ 𝜋

0

cos 𝜙
cos 𝜙 − cos𝜃 𝑑𝜙 = 𝜋 (2.98)

Referring back to Eqs. 2.95 and 2.98 we see that

𝛾(𝜙) = 2𝑉∞𝛼
tan 𝜙

(2.99)

is a solution. However, referring to Eq. 2.97 we see that adding on a
second term like that shown below is also a solution:

𝛾(𝜙) = 2𝑉∞𝛼
tan 𝜙

+ 𝑘

sin 𝜙
(2.100)
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where 𝑘 is an arbitrary constant. This last equation is the most general
solution. However, it presents a problem. Since the equation is satisfied
for any value of 𝑘 that means that 𝛾 has an infinite number of solutions
that satisfy the boundary conditions. That’s not helpful as that means
the lift has an infinite number of possibilities. We need some additional
information to close this equation.

The missing piece we use is the Kutta condition. As we’ve seen,
potential flow allows for an infinite number of solutions for the flow
field around an airfoil. However, at a sharp trailing edge the real flow
must leave smoothly at the trailing edge. If not, an infinitely large
pressure gradient would be required to force the flow around the sharp
corner. In a real flow, the large adverse pressure gradient would lead
to flow separation.

2.5.6 Kutta Condition

Potential flow analysis suggest that at a sharp trailing edge the velocity
will either be infinite, or it must leave smoothly at the bisection of the
training edge angle. The real fluid cannot permit such a large velocity
as that would require navigating a huge adverse pressure gradient and
the flow would separate. Thus, the latter is what occurs in reality.

Referring back to Eq. 2.85 we see that the predicted velocity is
discontinuous at the trailing edge (Fig. 2.18) unless 𝛾(𝑐) = 0. This
requirement (𝛾(𝑐) = 0) is the Kutta condition. Adding in the thickness
contribution it means that the flow speed on upper and lower surfaces
are equal at the trailing edge.

Fig. 2.18 A depiction of the Kutta con-
dition and the discontinuous jump in
𝑢𝑐 unless 𝛾(𝑐) = 0.

While the above derivation was motivated for a sharp airfoil, the
same condition can be applied to a blunt airfoil. In that case we assume
that the wake is thin and straight and does not support a pressure
difference. In other words the velocities at the trailing edge will still be
equal. The Kutta condition in this form cannot be used for unsteady
flows or applications like airfoils with jet flaps.

Referring back to our equation for the vortex distribution:

𝛾(𝜙) = 2𝑉∞𝛼
tan 𝜙

+ 𝑘

sin 𝜙
(2.101)
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Fig. 2.19 Diagram to help transform
from cosine coordinate system back
to original coordinate system.

with the Kutta condition expressed in our cosing spacing: 𝛾(𝜋) = 0, we
can see that at 𝜙 = 𝜋 the circulation is infinite unless:

𝑘 = 2𝑉∞𝛼 (2.102)

Inserting this into the above equation yields:

𝛾(𝜙) = 2𝑉∞𝛼
sin 𝜙

(1 + cos 𝜙) (2.103)

We can see that 𝛾(𝜋) = 0 by applying L’Hopital’s rule. While this
removes the infinite velocities at the trailing edge, there are still infinite
velocities at the leading edge. This is just a consequence of the fact
that at the leading edge the small disturbance assumption, on which
thin airfoil theory is based, is clearly violated. Later we will discuss a
method called Riegel’s correction to help address this issue.

While we did the derivation in a transformed coordinate system,
we now wish to transform back to our original coordinate system. We
can rearrange Eq. 2.92 as:

cos 𝜙 = 1 − 2𝑥
𝑐

(2.104)

Then with that definition, and the aid of Fig. 2.19, we can write an
expression for sin 𝜙 in terms of 𝑥 (just using the Pythagorean theorem):

sin 𝜙 = 2
[
𝑥

𝑐

(
1 − 𝑥

𝑐

)]1/2
. (2.105)

The resulting circulation distribution for a symmetric airfoil is then:

𝛾(𝑥) = 2𝑉∞𝛼

√
1 − 𝑥/𝑐√
𝑥/𝑐

(2.106)

2.5.7 Cambered Airfoil

The cambered case is a bit more difficult, but we start with the same
equation (Eq. 2.90), including camber this time, and apply the same
coordinate transformation (Eq. 2.92):∫ 𝜋

0

𝛾(𝜙) sin 𝜙

cos 𝜙 − cos𝜃 𝑑𝜙 = 2𝜋𝑉∞(𝛼 − 𝑏(𝜃)) (2.107)

where
𝑏(𝜃) = 𝑑𝑦̄

𝑑𝑥
(𝑥(𝜃)) (2.108)
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We also need the Kutta condition:

𝛾(𝜋) = 0 (2.109)

To find a solution we use the same form we found from the symmetric
solution (Eq. 2.103) and additional terms using a Fourier sine series. In
order to ensure that the Kutta condition can be meet we chose a form
of the equation that automatically satisfies this condition:

𝛾(𝜙) = 2𝑉∞

[
𝐴0

(1 + cos 𝜙)
sin 𝜙

+
∑
𝑛

𝐴𝑛 sin(𝑛𝜙)
]

(2.110)

where 𝐴𝑖 are Fourier coefficients. By plugging into our governing
equation Eq. 2.107, and using the integral in Eq. 2.96, we can compute
the coefficients from the known camber distribution as follows:

𝐴0 = 𝛼 − 1
𝜋

∫ 𝜋

0
𝑏(𝜃)𝑑𝜃

𝐴𝑛 =
2
𝜋

∫ 𝜋

0
𝑏(𝜃) cos(𝑛𝜃)𝑑𝜃

(2.111)

(2.112)

The evaluation process is then:

1. Get the camber line shape of the airfoil 𝑦̄.

2. Differentiate to get 𝑑𝑦̄/𝑑𝑥.

3. Perform a variable substitution in terms of 𝜃 (Eq. 2.92).

4. Evaluate the above integrals to get the Fourier coefficients.

The Fourier series converges even if the camber line does not have a
continuous slope (e.g., flaps and slats). Once we have the coefficients
then we have a known solution for 𝛾(𝜙) (Eq. 2.110).

2.5.8 Pressure

With computed source and vortex distributions we can now evaluate
pressure along the airfoil, and the resulting forces and moments. Recall
the definition of pressure coefficient for an incompressible, irrotational
flow:

𝐶𝑝 = 1 −
(
𝑉

𝑉∞

)2
(2.113)

In this case, the velocity is:

𝑉2 = 𝑢2 + 𝑣2 (2.114)
= (𝑉∞ cos 𝛼 + 𝑢𝑡 + 𝑢𝑐)2 + (𝑉∞ sin 𝛼 + 𝑣𝑡 + 𝑣𝑐)2 (2.115)
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Fig. 2.21 Local slope at some point on
the body.

Note that we retain all of the terms, as it is no longer necessary to ignore
some as we had to do in the boundary condition. Retaining all terms
improves the accuracy of the pressure distribution.

As hinted at earlier, one problem with thin airfoil theory is that it
leads to unrealistically large velocities near the leading edge because
the small disturbance assumption is not justified there. One way to
address this is to use Riegel’s correction. The method is simple, the
velocity is just multiplied by the cosine of the local airfoil slope:

𝑉𝑚𝑜𝑑 = 𝑉 cos 𝛽 (2.116)

Note that at the leading edge where 𝛽 = 90◦ this correction allows for a
stagnation point. In terms of our airfoil camber and thickness we can
rewrite this equation as:

𝑉𝑚𝑜𝑑 = 𝑉
1√

1 +
(
𝑑𝑦̄

𝑑𝑥
± 1

2
𝑑𝑡
𝑑𝑥

)2
(2.117)

This modified velocity is used in the pressure coefficient calculation:

𝐶𝑝 = 1 −
(
𝑉𝑚𝑜𝑑
𝑉∞

)2
(2.118)

2.5.9 Forces and Moments

With known pressures we can integrate along the surface to compute
forces and moments. We will use the coordinate system shown in
Fig. 2.20. On the upper surface the pressure over an incremental

Fig. 2.20 Normal and tangential di-
rections for integration.

surface 𝑑𝑠 leads to the following forces in the 𝑥-direction:

𝐹′𝑥 = −𝑝𝑢𝑑𝑠 cos 𝛽 (2.119)

and 𝑦-direction:
𝐹′𝑦 = 𝑝𝑢𝑑𝑠 sin 𝛽 (2.120)

where 𝛽 is the local slope (Fig. 2.21). Using the substitution:
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cos 𝛽 =
𝑑𝑥

𝑑𝑠
(2.121)

and

sin 𝛽 =
𝑑𝑦

𝑑𝑠
=

𝑑𝑦

𝑑𝑥
𝑑𝑥

𝑑𝑠
(2.122)

and including the lower surface leads to the following forces and
moments (per unit depth):

𝐹′𝑥 =

∫ 𝑐

0

(
𝑝𝑢
𝑑𝑦𝑢

𝑑𝑥
− 𝑝𝑙

𝑑𝑦𝑙

𝑑𝑥

)
𝑑𝑥 (2.123)

𝐹′𝑦 =

∫ 𝑐

0
(𝑝𝑙 − 𝑝𝑢) 𝑑𝑥 (2.124)

𝑀′
𝑙𝑒 =

∫ 𝑐

0

[
𝑝𝑢

(
𝑥 + 𝑦𝑢

𝑑𝑦𝑢

𝑑𝑥

)
− 𝑝𝑙

(
𝑥 + 𝑦𝑙

𝑑𝑦𝑙

𝑑𝑥

)]
𝑑𝑥 (2.125)

If we nondimensionalize we have:

𝑐𝑛 =

∫ 1

0

(
𝐶𝑝 𝑙 − 𝐶𝑝𝑢

)
𝑑
( 𝑥
𝑐

)
(2.126)

𝑐𝑎 =

∫ 1

0

(
𝐶𝑝𝑢

𝑑𝑦𝑢

𝑑𝑥
− 𝐶𝑝 𝑙

𝑑𝑦𝑙

𝑑𝑥

)
𝑑
( 𝑥
𝑐

)
(2.127)

𝑐𝑚𝑙𝑒 =

∫ 1

0

[
𝐶𝑝𝑢

(
𝑥

𝑐
+ 𝑦𝑢

𝑐

𝑑𝑦𝑢

𝑑𝑥

)
− 𝐶𝑝 𝑙

(
𝑥

𝑐
+ 𝑦𝑙

𝑐

𝑑𝑦𝑙

𝑑𝑥

)]
𝑑
( 𝑥
𝑐

)
(2.128)

where 𝑐𝑛 and 𝑐𝑎 are the normal force coefficient and axial force coefficient
corresponding to the 𝑦 and 𝑥 direction respectively, for our body-aligned
coordinate system.

We can evaluate the lift and drag from the above integrals (Eq. 1.13):

𝑐𝑙 = 𝑐𝑛 cos 𝛼 − 𝑐𝑎 sin 𝛼 (2.129)
𝑐𝑑 = 𝑐𝑛 sin 𝛼 + 𝑐𝑎 cos 𝛼 (2.130)

or more simply we can use the Kutta-Joukowski theorem. The total
circulation is given by the integrating the vorticity:

Γ =

∫ 𝑐

0
𝛾(𝑠)𝑑𝑠 (2.131)

To perform the integral we use our coordinate transformation (Eq. 2.94):

Γ =

∫ 𝑐

0
𝛾(𝑠)𝑑𝑠 (2.132)

=
𝑐

2

∫ 𝜋

0
𝛾(𝜙) sin 𝜙𝑑𝜙 (2.133)
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We then substitute the general solution for the vortex distribution
(Eq. 2.110) into the integral:

Γ =
𝑐

2

∫ 𝜋

0
2𝑉∞

[
𝐴0

(1 + cos 𝜙)
sin 𝜙

+
∑
𝑛

𝐴𝑛 sin(𝑛𝜙)
]

sin 𝜙𝑑𝜙 (2.134)

= 𝑉∞𝑐

[
𝐴0

∫ 𝜋

0
(1 + cos 𝜙)𝑑𝜙 +

∑
𝑛

𝐴𝑛

∫ 𝜋

0
sin 𝜙 sin(𝑛𝜙)𝑑𝜙

]
(2.135)

= 𝑉∞𝑐

[
𝐴0

(
𝜙 + sin 𝜙

)𝜋
0 +

∑
𝑛

𝐴𝑛

∫ 𝜋

0
sin 𝜙 sin(𝑛𝜙)𝑑𝜙

]
(2.136)

= 𝑉∞𝑐

[
𝐴0𝜋 +

∑
𝑛

𝐴𝑛

∫ 𝜋

0
sin 𝜙 sin(𝑛𝜙)𝑑𝜙

]
(2.137)

From the orthogonality of the Fourier terms:∫ 𝜋

0
sin(𝑛𝜃) sin(𝑚𝜃) = 0 for 𝑛 ≠ 𝑚 (2.138)

we see that the last integral vanishes for every term in the Fourier series
except 𝑛 = 1.

Γ = 𝑉∞𝑐

[
𝐴0𝜋 + 𝐴1

∫ 𝜋

0
sin2 𝜙𝑑𝜙

]
(2.139)

= 𝑉∞𝑐
[
𝐴0𝜋 + 𝐴1

𝜋
2

]
(2.140)

= 𝑉∞𝑐𝜋

[
𝐴0 +

𝐴1
2

]
(2.141)

To get the lift we then use the Kutta Joukowski theorem:

𝐿′ = 𝜌𝑉∞Γ (2.142)

𝐿′ = 𝜌𝑉2
∞𝑐𝜋

[
𝐴0 +

𝐴1
2

]
(2.143)

Integrating the drag leads to:

𝐷′ = 0 (2.144)

as expected.
Let’s analyze the equations in a bit more detail to see what in-

sights the analytic expression can offer. As usual, we will want to
nondimensionalize the lift:

𝑐𝑙 =
𝐿′

1
2𝜌𝑉

2
∞𝑐

= 2𝜋
(
𝐴0 +

𝐴1
2

)
(2.145)

= 2𝜋
[
𝛼 − 1

𝜋

∫ 𝜋

0
𝑏(𝜃)(1 − cos𝜃)𝑑𝜃

]
(2.146)
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If we compare this with the standard form for the lift curve (prior to
stall):

𝑐𝑙 = 𝑚(𝛼 − 𝛼0) (2.147)

We notice the remarkable and useful result that no matter what shape
the airfoil is the theoretical lift curve slope is always 2𝜋:

𝑚 = 2𝜋 (2.148)

In practice, the lift curve slope of real airfoils is generally a bit less than
2𝜋 because of viscous effects, but is still quite close. The second part
gives the zero lift angle of attack:

𝛼0 =
1
𝜋

∫ 𝜋

0
𝑏(𝜃)(1 − cos𝜃)𝑑𝜃 (2.149)

which would be zero for an uncambered airfoil (𝑏(𝜃) = 0) as expected.
The pitching moment can be derived about an arbitrary point 𝑥 as

shown in ??. The integral is:

𝑀(𝑥) = −𝜌𝑉∞

∫ 𝑐

0
𝛾(𝑠)(𝑠 − 𝑥)𝑑𝑠 (2.150)

where the negative sign is used since a pitch up is considered a positive
moment. Using our coordinate transformations (Eqs. 2.92 to 2.94)
results in:

𝑀(𝑥) = −𝜌𝑉∞𝑐2

4

∫ 𝜋

0
𝛾(𝜙) sin 𝜙(cos𝜃 − cos 𝜙)𝑑𝜙 (2.151)

=
𝜌𝑉∞𝑐

2

[
cos𝜃

∫ 𝜋

0
𝛾(𝜙) sin 𝜙𝑑𝜙 −

∫ 𝜋

0
𝛾(𝜙) sin 𝜙 cos 𝜙𝑑𝜙

]
(2.152)

The first integral is the same as the one we evaluated for lift earlier
(Eq. 2.133), excepting the constant 𝑐/2 term and evaluates to Eq. 2.141
(times 2/𝑐).

𝑀(𝑥) = −𝜌𝑉∞𝑐2

4

[
cos𝜃 2𝑉∞𝜋

(
𝐴0 +

𝐴1
2

)
−

∫ 𝜋

0
𝛾(𝜙) sin 𝜙 cos 𝜙𝑑𝜙

]
(2.153)
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Let’s consider only the second integral now:∫ 𝜋

0
𝛾(𝜙) sin 𝜙 cos 𝜙𝑑𝜙 (2.154)

= 2𝑉∞

[
𝐴0

∫ 𝜋

0
cos 𝜙(1 + cos 𝜙) +

∑
𝑛

𝐴𝑛

∫ 𝜋

0
sin 𝜙 cos 𝜙 sin(𝑛𝜙)

]
(2.155)

= 2𝑉∞

[
𝐴0

𝜋
2 + 𝐴1

∫ 𝜋

0
cos 𝜙 sin 𝜙 sin(𝜙) + 𝐴2

∫ 𝜋

0
cos 𝜙 sin 𝜙 sin(2𝜙)

(2.156)

𝐴3

∫ 𝜋

0
cos 𝜙 sin 𝜙 sin(3𝜙) + . . .

]
(2.157)

The 𝐴1 term integrates to zero, as does 𝐴3 and all higher order terms.
The 𝐴2 term integrates to 𝜋/4.∫ 𝜋

0
𝛾(𝜙) sin 𝜙 cos 𝜙𝑑𝜙 = 2𝑉∞

[
𝐴0

𝜋
2 + 𝐴2

𝜋
4

]
(2.158)

We now plug this result back into Eq. 2.153 yielding:

𝑀(𝑥) = −𝜌𝑉∞𝑐2

4

[
cos𝜃 2𝑉∞𝜋

(
𝐴0 +

𝐴1
2

)
− 2𝑉∞

(
𝐴0

𝜋
2 + 𝐴2

𝜋
4

)]
(2.159)

= −𝜌𝑉2
∞𝑐

2𝜋

2

[
cos𝜃

(
𝐴0 +

𝐴1
2

)
−

(
𝐴0

1
2 + 𝐴2

1
4

)]
(2.160)

= −𝜌𝑉2
∞𝑐

2𝜋

2

[
𝐴0

(
cos𝜃 − 1

2

)
+ 𝐴1

cos𝜃
2 − 𝐴2

4

]
(2.161)

(2.162)

Let’s now express this in terms of 𝑥 using our inverse transformation
(Eq. 2.104):

𝑀(𝑥) = −𝜌𝑉2
∞𝑐

2𝜋

2

[
𝐴0

(
1
2 − 2𝑥

𝑐

)
+ 𝐴1

(
1
2 − 𝑥

𝑐

)
− 𝐴2

4

]
(2.163)

Now for convenience, we distribute a 𝑐/2 from the outside term through
the parenthesis:

𝑀(𝑥) = −𝜌𝑉2
∞𝑐𝜋

[
𝐴0

( 𝑐
4 − 𝑥

)
+ 𝐴1

( 𝑐
4 − 𝑥

2

)
− 𝐴2

𝑐

8

]
(2.164)

The definition of the aerodynamic center is the point about which
the pitching moment is independent of angle of attack 𝑑𝑀/𝑑𝛼 = 0. The
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Fig. 2.22 A parabolic camber line.

only Fourier coefficient that depends on angle of attack is 𝐴0:

𝐴0 = 𝛼 − 1
𝜋

∫ 𝜋

0
𝑏(𝜙)𝑑𝜙 (2.165)

So from the moment equation we can see that the point at which
𝑑𝑀/𝑑𝛼 = 0 is when 𝑥 = 𝑐/4. This is another highly useful result from
thin airfoil theory, namely that the airfoil quarter chord is the theoretical
location of the aerodynamic center.

𝑥𝑎𝑐 =
𝑐

4 (2.166)

We can also compute the pitching moment coefficient about the aerody-
namic center, but that depends on the specific airfoil shape.

𝑀𝑎𝑐 = 𝑀(𝑥 = 𝑐/4) = −𝜌𝑉2
∞𝑐𝜋

[
𝐴1
𝑐

8 − 𝐴2
𝑐

8

]
(2.167)

= −𝜌𝑉2
∞𝑐

2𝜋

8 (𝐴1 − 𝐴2) (2.168)

𝑐𝑚ac =
𝑀𝑎𝑐

1
2𝜌𝑉

2
∞𝑐2

(2.169)

= −𝜋
4 (𝐴1 − 𝐴2) (2.170)

Example 2.1 Parabolic camber

Let’s consider an example of an airfoil with parabolic camber as shown in
Fig. 2.22 and given in equation form as:

𝑦̄ = 4𝜖 𝑥
𝑐
(𝑐 − 𝑥) (2.171)

where 𝜖 is the the maximum camber.
We now follow the steps outlined at the end of Section 2.5.7. With the

camber line defined we now differentiate:

𝑑𝑦̄

𝑑𝑥
= 4𝜖

(
1 − 2𝑥

𝑐

)
(2.172)

Then apply the variable substitution 𝑥 = 𝑐
2 (1 − cos 𝜙):

𝑏(𝜙) = 4𝜖 cos 𝜙 (2.173)

We now perform the integrals for the Fourier coefficients:

𝐴0 = 𝛼 − 4𝜖
𝜋

∫ 𝜋

0
cos 𝜙𝑑𝜙 (2.174)

= 𝛼 (2.175)
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Fig. 2.23 A lumped vortex model and
a control point marked with x.

𝐴1 =
8𝜖
𝜋

∫ 𝜋

0
cos2(𝜙)𝑑𝜙 (2.176)

= 4𝜖 (2.177)

𝐴2 =
8𝜖
𝜋

∫ 𝜋

0
cos(𝜙) cos(2𝜙)𝑑𝜙 (2.178)

= 0 (2.179)

Similarly, 𝐴𝑛 = 0 for all 𝑛 ≥ 2.
Using the equation for lift we have:

𝐿′ = 𝜋𝜌𝑉2
∞𝑐(𝛼 + 2𝜖) (2.180)

2.5.10 Lumped Vortex Method

The following discussion is a bit of an aside, but uses the results of
thin airfoil theory and will be useful in a later chapter. Let’s consider a
model as shown in Fig. 2.23. Rather than using a distribution of vortices,
we want to lump all the vorticity into one point vortex. This model will
be used later in a vortex lattice method where we need a simple way
to model the camber and will use results of thin airfoil theory to do
so. With only one point vortex we can only satisfy the flow tangency
boundary condition at one point (the control point denoted by x). The
question then is where should we place the point vortex (distance 𝑎),
and where should we place the control point (distance 𝑏)?

In Eq. 2.73 we derived that the flow tangency boundary condition
for the vertical velocity is:

𝑣𝑐 = 𝑉∞

(
𝑑𝑦̄

𝑑𝑥
− 𝛼

)
(2.181)

For a point vortex we know that the induced velocity is given by
𝑉𝜃 = Γ/(2𝜋𝑟) or in this case the velocity of the vortex induced at the
control point where we will impose the boundary condition is:

− Γ

2𝜋(𝑏 − 𝑎) = 𝑉∞

(
𝑑𝑦̄

𝑑𝑥
− 𝛼

)
(2.182)

As we know nothing about the airfoil at this stage, we will assume
a parabolic camber as that seems reasonably flexible will still retaining
simplicity. The previous example provides the camber line slope, which
is given by the following equation when evaluated at the control point:

𝑑𝑦̄

𝑑𝑥

����
𝑥=𝑏

= 4𝜖
(
1 − 2𝑏

𝑐

)
(2.183)
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Similarly, the previous example solved for the lift of a parabolic camber
airfoil, which we can relate to circulation through the Kutta-Joukowski
theorem:

𝐿′ = 𝜋𝜌𝑉2
∞𝑐(𝛼 + 2𝜖) = 𝜌𝑉∞Γ (2.184)

Solving for Γ and using some algebra on the above equation results in
the following:( 𝑐

𝑏 − 𝑎
)
𝛼 +

(
2𝑐
𝑏 − 1

)
𝜖 = (2) 𝛼 −

(
8
(
1 − 2𝑏

𝑐

))
𝜖 (2.185)

For this equation to be satisfied the coefficients in front of 𝛼 must be
equal, as must the coefficients in front of 𝜖. This gives two equations
for two unknowns:

𝑎 =
1
4 𝑐 (2.186)

𝑏 =
3
4 𝑐 (2.187)

Thus, using the results of thin airfoil theory suggests that we should put
the vortex at the quarter chord and the control point at three-quarters
chord.

2.6 Hess-Smith Panel Method

Thin airfoil theory is quite clever, but comes with a few significant
limitations. The most problematic limitation is the assumption of
small disturbances. This means that near stagnation points, which
exist for all airfoils, the pressure distributions are not well predicted.
Significant inaccuracies may also exist for airfoils with high camber or
large thickness.

We will reuse the ideas of thin airfoil theory where complex solutions
are built up from distributions of sources, vortices, etc. The advantage to
this approach is that the governing equation (Laplace) is automatically
satisfied, as is the farfield boundary condition. We only need to worry
about satisfying flow tangency and the Kutta condition. The main
deviation we make from thin airfoil theory is to place the source/vortex
distributions on the surface of the body rather than at the chord line,
and use the exact flow tangency conditions imposed at the surface. The
approach is to discretize the geometry into segments that we call panels.
The integral equations developed in this chapter can be applied on
each panel leading to a system of linear equations. The methodology
is called a panel method, and can be applied in 3D. There are many
different types of panel methods of varying sophistication. Modern



2 Potential Flow 60

panel methods often use sources and doublets rather than vortices.
In this section we will study one of the simplest but still useful panel
methods for two-dimensional flow. It was developed by Hess and
Smith of Douglas Aircraft in 1966 and was the first practical panel
method.

We still use the same key idea that we will model the flow as
a contribution of three potential functions: freestream, line source
distributions (Eq. 2.52), and vortex line distributions (Eq. 2.59).

𝜙 = 𝜙∞ + 𝜙𝑡 + 𝜙𝑐 (2.188)

= 𝑉∞ cos(𝛼𝑥) +𝑉∞ sin(𝛼𝑦) +
∫ 𝑐

0

𝑞(𝑠)
2𝜋 ln 𝑟𝑑𝑠 −

∫ 𝑐

0

𝛾(𝑠)
2𝜋 𝜃𝑑𝑠

(2.189)

The above integrals are difficult to evaluate on arbitrary shapes so
a common simplification is to approximate the airfoil with straight
line segments. These segments form the “panels”, and they will be
numbered as shown in Fig. 2.24. With that simplification the equation
becomes a summation of integrals that occur over flat panels:

𝜙 = 𝑉∞ cos(𝛼𝑥)+𝑉∞ sin(𝛼𝑦)+
𝑁∑
𝑖=1

∫
panel 𝑖

[
𝑞(𝑠)
2𝜋 ln 𝑟 − 𝛾(𝑠)

2𝜋 𝜃

]
𝑑𝑠 (2.190)

Fig. 2.24 An airfoil discretized into
straight line panels.

The Hess/Smith model makes the following simplifications. First,
that the source strength (𝑞(𝑠)) is constant on a given panel, but can
vary from panel to panel. These strengths will be varied to satisfy
flow tangency at control points, one for each panel (𝑁 strengths and
𝑁 boundary conditions). Next, they chose to have the vortex strength
(𝛾(𝑠)) be constant over the entire airfoil (and thus constant on each panel).
This leads to one additional unknown to satisfy the one additional
equation: the Kutta condition.

A panel with constant source/vortex strength produces infinite
velocities at the ends of each panel and so control points cannot be at
the end points. The midpoint is the most logical choice but that could be
the midpoint of the panel or the midpoint of the actual surface. For this
model it works better (and is simpler) to have the control points at the
midpoints of the panel. This is because numerical errors can occur if the
control point is too close to a singularity. Similarly, the Kutta condition



2 Potential Flow 61

Fig. 2.26 Nomenclature for a generic
panel 𝑖.

is applied at the control points on the middle of the trailing edge panels
highlighted in Fig. 2.25. Note that with this method the Kutta condition
is then not quite at the trailing edge. The real flow, with viscosity, does
not have a stagnation point right at the trailing edge anyway, so it turns
out this approximation fortuitously often yields better predictions than
a more numerically accurate boundary condition would.

Fig. 2.25 Location of control points
(x) and direction of normal for an ar-
bitrary panel, and the controls points
(x) on the trailing edge-panels for the
Kutta condition.

Let us consider a generic panel as described in Fig. 2.26. From
known end point locations (𝑥𝑖 , 𝑦𝑖), we need to determine the control
point locations, the angle, and the normal and tangent vectors. Because
we chose to model control points at the center of the panels rather than
at the center of the surface they are easily computed:

𝑥̄𝑖 =
𝑥𝑖 + 𝑥𝑖+1

2 (2.191)

𝑦̄𝑖 =
𝑦𝑖 + 𝑦𝑖+1

2 (2.192)

As we will see, the methodology doesn’t actually need 𝜃 but rather
sin𝜃 and cos𝜃. These can be computed as:

sin𝜃𝑖 =
𝑦𝑖+1 − 𝑦𝑖

𝑙𝑖
(2.193)

cos𝜃𝑖 =
𝑥𝑖+1 − 𝑥𝑖

𝑙𝑖
(2.194)

Based on our numbering scheme (Fig. 2.24) the body is to the right
when progressing from 𝑖 to 𝑖 + 1 and the surface normal always points
out (away from the body). Thus, the normal and tangential vectors are
given by:

𝑡𝑖 = cos𝜃𝑖 𝑥̂ + sin𝜃𝑖 𝑦̂ (2.195)
𝑛̂𝑖 = − sin𝜃𝑖 𝑥̂ + cos𝜃𝑖 𝑦̂ (2.196)

The velocity at panel 𝑖 will be the velocity calculated at control point 𝑖:

𝑢𝑖 ≡ 𝑢(𝑥̄𝑖 , 𝑦̄𝑖) (2.197)
𝑣𝑖 ≡ 𝑣(𝑥̄𝑖 , 𝑦̄𝑖) (2.198)

With that setup we can now write our boundary conditions in
equation form. First, the no-flow-through, or flow tangency, condition
is:

⇀

𝑉 · 𝑛̂ = 0 (2.199)
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Fig. 2.28 A rotated coordinate system
aligned with an arbitrary panel 𝑗.

Using the vectors we defined earlier we can express this as:

−𝑢𝑖 sin𝜃𝑖 + 𝑣𝑖 cos𝜃𝑖 = 0 (2.200)

which is applied at each panel. Next, as we saw, one way to state the
Kutta condition is that the tangential velocity at the trailing edge is the
same on the upper and lower surfaces:

𝑉𝑡1 = −𝑉𝑡𝑛 (2.201)

or using our panel notation:

𝑢1 cos𝜃1 + 𝑣1 sin𝜃1 = −𝑢𝑁 cos𝜃𝑁 − 𝑣𝑁 sin𝜃𝑁 (2.202)

To build up the solution we need to be able to compute the influence
of a panel on another panel. To start, we compute 𝑢∗

𝑠𝑖𝑗
and 𝑣∗

𝑠𝑖𝑗
, which

is the 𝑥 and 𝑦 components of velocity at panel 𝑖 induced by a source
distribution at panel 𝑗 (see Fig. 2.27).

Fig. 2.27 Computing induced velocity
at panel 𝑖 from a line source distribu-
tion along panel 𝑗.

To determine the velocities, we need to consider a generic panel
𝑗 as shown in Fig. 2.28. For convenience we use a rotated coordinate
system aligned with the panel (𝑥∗ , 𝑦∗). In the rotated coordinate system,
we already know the how to compute the velocities. This is exactly
what we derived previously: the velocities induced by a line source
distribution over a finite segment (Eqs. 2.53 and 2.54), except in this
case the source strength is constant over the panel.

𝑢∗𝑠𝑖𝑗 =
𝑞 𝑗

2𝜋

∫ 𝑙𝑗

0

𝑥∗ − 𝑠
(𝑥∗ − 𝑠)2 + (𝑦∗)2 𝑑𝑠 (2.203)

𝑣∗𝑠𝑖𝑗 =
𝑞 𝑗

2𝜋

∫ 𝑙𝑗

0

𝑦∗

(𝑥∗ − 𝑠)2 + (𝑦∗)2 𝑑𝑠 (2.204)

With 𝑞 out of the integral, both of these integrals can be solved
analytically (recall that 𝑥∗ and 𝑦∗ are constants in the integral as they
are just an evaluation point).
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𝑢∗𝑠𝑖𝑗 =
𝑞 𝑗

2𝜋

∫ 𝑙𝑗

0

𝑥∗ − 𝑠
(𝑥∗ − 𝑠)2 + (𝑦∗)2 𝑑𝑠

=
𝑞 𝑗

2𝜋

(
1
−2

) ∫ 𝑙𝑗

0

−2(𝑥∗ − 𝑠)
(𝑥∗ − 𝑠)2 + (𝑦∗)2 𝑑𝑠

=
𝑞 𝑗

2𝜋

(
1
−2

) [
ln

(
(𝑥∗ − 𝑠)2 + (𝑦∗)2

)] 𝑙𝑗
0

=
𝑞 𝑗

2𝜋

(
1
−2

) [
ln

(
(𝑥∗ − 𝑙 𝑗)2 + (𝑦∗)2

)
− ln

(
(𝑥∗)2 + (𝑦∗)2

)]
=

−𝑞 𝑗
2𝜋

(
1
2

)
ln

[
(𝑥∗ − 𝑙 𝑗)2 + (𝑦∗)2

(𝑥∗)2 + (𝑦∗)2

]

=
−𝑞 𝑗
2𝜋 ln


√
(𝑥∗ − 𝑙 𝑗)2 + (𝑦∗)2√
(𝑥∗)2 + (𝑦∗)2



(2.205)

The 𝑣 integral can also be found analytically:

𝑣∗𝑠𝑖𝑗 =
𝑞 𝑗

2𝜋

∫ 𝑙𝑗

0

𝑦∗

(𝑥∗ − 𝑠)2 + (𝑦∗)2 𝑑𝑠

=
𝑞 𝑗

2𝜋

∫ 𝑙𝑗

0

1/𝑦∗(
𝑥∗−𝑠
𝑦∗

)2
+ 1

𝑑𝑠
(2.206)

If we let 𝑧 = (𝑥∗ − 𝑠)/𝑦∗ then 𝑑𝑧 = −𝑑𝑠/𝑦∗ and the integral becomes:

𝑣∗𝑠𝑖𝑗 =
𝑞 𝑗

2𝜋

∫ (𝑥∗−𝑙𝑗 )/𝑦∗

𝑥∗/𝑦∗

−1
𝑧2 + 1

𝑑𝑧

=
𝑞 𝑗

2𝜋

∫ 𝑥∗/𝑦∗

(𝑥∗−𝑙𝑗 )/𝑦∗

1
𝑧2 + 1

𝑑𝑧

=
𝑞 𝑗

2𝜋
[
tan−1 𝑧

] 𝑥∗/𝑦∗
(𝑥∗−𝑙𝑗 )/𝑦∗

=
𝑞 𝑗

2𝜋

[
tan−1

(
𝑥∗

𝑦∗

)
− tan−1

(
𝑥∗ − 𝑙 𝑗
𝑦∗

)]
(2.207)

These equations are a bit cumbersome but fortunately we can
simplify them quite a bit by looking at the geometry of the problem.
Consider the figure shown in Fig. 2.29. Examining the geometry we
see that our equations can be simplified as:

𝑢∗𝑠𝑖𝑗 =
−𝑞 𝑗
2𝜋 ln

(
𝑟𝑖 𝑗+1

𝑟𝑖 𝑗

)
𝑣∗𝑠𝑖𝑗 =

𝑞 𝑗

2𝜋 (𝛼 − 𝜃) → 𝑣∗𝑠𝑖𝑗 = 𝑞 𝑗
𝛽𝑖 𝑗
2𝜋

(2.208)
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Fig. 2.30 Two vectors originating from
a common origin.

An additional benefit of this simplification is that our equations no
longer depend upon the rotated coordinate system 𝑥∗ , 𝑦∗.

Fig. 2.29 A depiction of the geometry
for an evaluation point on panel 𝑖
from singularities integrating across
panel 𝑗.

We need to be careful when computing 𝛽. There are various
trigonometry approaches we could use, but we may run into problems
for large angles. Consider two vectors starting from a common point as
shown in Fig. 2.30. The definitions of the cross and dot product yield:

⇀
𝑎 ×

⇀

𝑏 = |𝑎 | |𝑏 | sin𝜃 (2.209)
⇀
𝑎 ·

⇀

𝑏 = |𝑎 | |𝑏 | cos𝜃 (2.210)

If we divide these two equations and solve for 𝜃 we get:

𝜃 = tan−1
⇀
𝑎 ×

⇀

𝑏
⇀
𝑎 ·

⇀

𝑏
(2.211)

Using our geometry leads to the following equation for 𝛽:

𝛽𝑖 𝑗 =

{
atan2

( (𝑥 𝑗−𝑥̄𝑖 )(𝑦𝑗+1−𝑦̄𝑖 )−(𝑦𝑗−𝑦̄𝑖 )(𝑥 𝑗+1−𝑥̄𝑖 )
(𝑥 𝑗−𝑥̄𝑖 )(𝑥 𝑗+1−𝑥̄𝑖 )+(𝑦𝑗−𝑦̄𝑖 )(𝑦𝑗+1−𝑦̄𝑖 )

)
if 𝑖 ≠ 𝑗

𝜋 if 𝑖 = 𝑗
(2.212)

The equation for 𝛽𝑖𝑖 is not obvious. The angle approaches 𝜋 or
−𝜋 depending on which direction you approach from. In our case,
we always come from the outside based on the way we defined our
geometry and the fact that we only care about external flow so that
is why 𝛽𝑖𝑖 = 𝜋. We need to make sure we force this. If we rely on
the first equation to compute the self-induction then some panels will
evaluate to something close to 𝜋 and others close to −𝜋 based on small
numerical errors.

While this equation is a bit long, it is reliable. If we use the atan2
function then the domain is (−𝜋,𝜋] and we don’t have to worry about



2 Potential Flow 65

what quadrant we are in. This formula works equally well in three
dimensions.

For vortices the procedure is essentially the same. As we’ve seen
with thin airfoil theory the integrals are just swapped between 𝑥 and 𝑦
with a sign change. The result is:

𝑢∗𝑣𝑖𝑗 = 𝛾
𝛽𝑖 𝑗
2𝜋

𝑣∗𝑣𝑖𝑗 =
𝛾

2𝜋 ln
(
𝑟𝑖 𝑗+1

𝑟𝑖 𝑗

) (2.213)

Recall that we computed all the velocities in the rotated (starred)
coordinate system (Fig. 2.28). We need to rotate the velocities back to
the original 𝑥, 𝑦 coordinate system:

𝑢 = 𝑢∗ cos𝜃𝑗 − 𝑣∗ sin𝜃𝑗

𝑣 = 𝑢∗ sin𝜃𝑗 + 𝑣∗ cos𝜃𝑗
(2.214)

Now, we can put everything together. Recall that the flow tangency
boundary condition is (Eq. 2.200):

−𝑢𝑖 sin𝜃𝑖 + 𝑣𝑖 cos𝜃𝑖 = 0 (2.215)

Each velocity is the sum of the freestream velocity and the sources and
vortices from each panel:

𝑢𝑖 = 𝑉∞ cos 𝛼 +
𝑁∑
𝑗=1

𝑢𝑠𝑖𝑗 +
𝑁∑
𝑗=1

𝑢𝑣𝑖𝑗

𝑣𝑖 = 𝑉∞ sin 𝛼 +
𝑁∑
𝑗=1

𝑣𝑠𝑖𝑗 +
𝑁∑
𝑗=1

𝑣𝑣𝑖𝑗

(2.216)

We now have to make a bunch of substitutions. First, the coordinate
transformation (Eq. 2.214):

𝑢𝑖 = 𝑉∞ cos 𝛼 +
𝑁∑
𝑗=1

(𝑢∗𝑠𝑖𝑗 cos𝜃𝑗 − 𝑣∗𝑠𝑖𝑗 sin𝜃𝑗 + 𝑢∗𝑣𝑖𝑗 cos𝜃𝑗 − 𝑣∗𝑣𝑖𝑗 sin𝜃𝑗)

𝑣𝑖 = 𝑉∞ sin 𝛼 +
𝑁∑
𝑗=1

(𝑢∗𝑠𝑖𝑗 sin𝜃𝑗 + 𝑣∗𝑠𝑖𝑗 cos𝜃𝑗 + 𝑢∗𝑣𝑖𝑗 sin𝜃𝑗 + 𝑣∗𝑣𝑖𝑗 cos𝜃𝑗)

(2.217)
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Next, we substititue in the panel velocities (Eqs. 2.208 and 2.213):

𝑢𝑖 = 𝑉∞ cos 𝛼 +
𝑁∑
𝑗=1

[−𝑞 𝑗
2𝜋 ln

(
𝑟𝑖 𝑗+1

𝑟𝑖 𝑗

)
cos𝜃𝑗

−𝑞 𝑗
𝛽𝑖 𝑗
2𝜋 sin𝜃𝑗 + 𝛾

𝛽𝑖 𝑗
2𝜋 cos𝜃𝑗 −

𝛾

2𝜋 ln
(
𝑟𝑖 𝑗+1

𝑟𝑖 𝑗

)
sin𝜃𝑗

]
= 𝑉∞ cos 𝛼 +

𝑁∑
𝑗=1

[−𝑞 𝑗
2𝜋

(
ln

(
𝑟𝑖 𝑗+1

𝑟𝑖 𝑗

)
cos𝜃𝑗 + 𝛽𝑖 𝑗 sin𝜃𝑗

)
+ 𝛾

2𝜋

(
𝛽𝑖 𝑗 cos𝜃𝑗 − ln

(
𝑟𝑖 𝑗+1

𝑟𝑖 𝑗

)
sin𝜃𝑗

)]
𝑣𝑖 = 𝑉∞ sin 𝛼 +

𝑁∑
𝑗=1

[−𝑞 𝑗
2𝜋 ln

(
𝑟𝑖 𝑗+1

𝑟𝑖 𝑗

)
sin𝜃𝑗

+𝑞 𝑗
𝛽𝑖 𝑗
2𝜋 cos𝜃𝑗 + 𝛾

𝛽𝑖 𝑗
2𝜋 sin𝜃𝑗 +

𝛾

2𝜋 ln
(
𝑟𝑖 𝑗+1

𝑟𝑖 𝑗

)
cos𝜃𝑗

]
= 𝑉∞ sin 𝛼 +

𝑁∑
𝑗=1

[
𝑞 𝑗

2𝜋

(
− ln

(
𝑟𝑖 𝑗+1

𝑟𝑖 𝑗

)
sin𝜃𝑗 + 𝛽𝑖 𝑗 cos𝜃𝑗

)
+ 𝛾

2𝜋

(
𝛽𝑖 𝑗 sin𝜃𝑗 + ln

(
𝑟𝑖 𝑗+1

𝑟𝑖 𝑗

)
cos𝜃𝑗

)]

(2.218)

Now we substitute into the boundary condition (Eq. 2.200):

−𝑉∞ cos 𝛼 sin𝜃𝑖 +
𝑁∑
𝑗=1

[
𝑞 𝑗

2𝜋

(
ln

(
𝑟𝑖 𝑗+1

𝑟𝑖 𝑗

)
cos𝜃𝑗 sin𝜃𝑖 + 𝛽𝑖 𝑗 sin𝜃𝑗 sin𝜃𝑖

)
− 𝛾

2𝜋

(
𝛽𝑖 𝑗 cos𝜃𝑗 sin𝜃𝑖 − ln

(
𝑟𝑖 𝑗+1

𝑟𝑖 𝑗

)
sin𝜃𝑗 sin𝜃𝑖

)]
+𝑉∞ sin 𝛼 cos𝜃𝑖 +

𝑁∑
𝑗=1

[
𝑞 𝑗

2𝜋

(
− ln

(
𝑟𝑖 𝑗+1

𝑟𝑖 𝑗

)
sin𝜃𝑗 cos𝜃𝑖 + 𝛽𝑖 𝑗 cos𝜃𝑗 cos𝜃𝑖

)
+ 𝛾

2𝜋

(
𝛽𝑖 𝑗 sin𝜃𝑗 cos𝜃𝑖 + ln

(
𝑟𝑖 𝑗+1

𝑟𝑖 𝑗

)
cos𝜃𝑗 cos𝜃𝑖

)]
= 0

(2.219)
Grouping like terms:
𝑁∑
𝑗=1

[
𝑞 𝑗

2𝜋

(
ln

(
𝑟𝑖 𝑗+1

𝑟𝑖 𝑗

)
(cos𝜃𝑗 sin𝜃𝑖 − sin𝜃𝑗 cos𝜃𝑖) + 𝛽𝑖 𝑗(sin𝜃𝑗 sin𝜃𝑖 + cos𝜃𝑗 cos𝜃𝑖)

)
+ 𝛾

2𝜋

(
𝛽𝑖 𝑗(sin𝜃𝑗 cos𝜃𝑖 − cos𝜃𝑗 sin𝜃𝑖) + ln

(
𝑟𝑖 𝑗+1

𝑟𝑖 𝑗

)
(sin𝜃𝑗 sin𝜃𝑖 + cos𝜃𝑗 cos𝜃𝑖)

)]
= 𝑉∞ cos 𝛼 sin𝜃𝑖 −𝑉∞ sin 𝛼 cos𝜃𝑖

(2.220)
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Now we can simplify using trig identities:

𝑁∑
𝑗=1

[
𝑞 𝑗

2𝜋

(
ln

(
𝑟𝑖 𝑗+1

𝑟𝑖 𝑗

)
sin(𝜃𝑖 − 𝜃𝑗) + 𝛽𝑖 𝑗 cos(𝜃𝑖 − 𝜃𝑗)

)
+ 𝛾

2𝜋

(
−𝛽𝑖 𝑗 sin(𝜃𝑖 − 𝜃𝑗) + ln

(
𝑟𝑖 𝑗+1

𝑟𝑖 𝑗

)
cos(𝜃𝑖 − 𝜃𝑗)

)]
= 𝑉∞ sin(𝜃𝑖 − 𝛼)

(2.221)

Finally, we can write this a linear set of equations for 𝑞 𝑗 and 𝛾 of the
form:

𝑁∑
𝑗=1

𝐴𝑖 𝑗𝑞 𝑗 + 𝐴𝑖 ,𝑁+1𝛾 = 𝑏𝑖 (2.222)

where

𝐴𝑖 𝑗 =

[
ln

(
𝑟𝑖 𝑗+1

𝑟𝑖 𝑗

)
sin(𝜃𝑖 − 𝜃𝑗) + 𝛽𝑖 𝑗 cos(𝜃𝑖 − 𝜃𝑗)

]
𝐴𝑖𝑁+1 =

𝑁∑
𝑗=1

[
ln

(
𝑟𝑖 𝑗+1

𝑟𝑖 𝑗

)
cos(𝜃𝑖 − 𝜃𝑗) − 𝛽𝑖 𝑗 sin(𝜃𝑖 − 𝜃𝑗)

]
𝑏𝑖 = 2𝜋𝑉∞ sin(𝜃𝑖 − 𝛼)

(2.223)

We need to be careful when computing the angles 𝜃. Note that they
only appear as sums and differences within sin and cosine function.
We can use the sum and difference formulas:

sin(𝜃𝑖 − 𝜃𝑗) = sin𝜃𝑖 sin𝜃𝑗 − cos𝜃𝑖 cos𝜃𝑗 (2.224)

cos(𝜃𝑖 − 𝜃𝑗) = cos𝜃𝑖 cos𝜃𝑗 + sin𝜃𝑖 sin𝜃𝑗 (2.225)

With these expansions we never need to explicitly compute 𝜃, but rather
just use the formulas show in Eqs. 2.193 and 2.194 for sin𝜃𝑖 and cos𝜃𝑖 .
Alternatively, we can compute each 𝜃𝑖 directly, but we must use the
atan2 function. This is because sin−1(0.5), for example, has multiple
solutions, and the default implementation does not account for which
quadrant we are. The function atan2 on the other hand, looks at the
signs of the components to determine the quadrant, and thus return a
unique angle.

Now we have to enforce the Kutta condition (Eq. 2.202) and follow
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more or less the same procedure. First, we substitute in (Eq. 2.216):

𝑢1 cos𝜃1 + 𝑣1 sin𝜃1 = −𝑢𝑁 cos𝜃𝑁 − 𝑣𝑁 sin𝜃𝑁

⇒

©­«𝑉∞ cos 𝛼 +
𝑁∑
𝑗=1

𝑢𝑠1𝑗 +
𝑁∑
𝑗=1

𝑢𝑣1𝑗
ª®¬ cos𝜃1

+ ©­«𝑉∞ sin 𝛼 +
𝑁∑
𝑗=1

𝑣𝑠1𝑗 +
𝑁∑
𝑗=1

𝑣𝑣1𝑗
ª®¬ sin𝜃1

= − ©­«𝑉∞ cos 𝛼 +
𝑁∑
𝑗=1

𝑢𝑠𝑁 𝑗 +
𝑁∑
𝑗=1

𝑢𝑣𝑁 𝑗
ª®¬ cos𝜃𝑁

− ©­«𝑉∞ sin 𝛼 +
𝑁∑
𝑗=1

𝑣𝑠𝑁 𝑗 +
𝑁∑
𝑗=1

𝑣𝑣𝑁 𝑗
ª®¬ sin𝜃𝑁

(2.226)

Next, we introduce the coordinate system transformation (Eq. 2.214):

©­«𝑉∞ cos 𝛼 +
𝑁∑
𝑗=1

(
𝑢∗𝑠1𝑗 cos𝜃𝑗 − 𝑣∗𝑠1𝑗 sin𝜃𝑗 + 𝑢∗𝑣1𝑗 cos𝜃𝑗 − 𝑣∗𝑣1𝑗 sin𝜃𝑗

)ª®¬ cos𝜃1

+ ©­«𝑉∞ sin 𝛼 +
𝑁∑
𝑗=1

(
𝑢∗𝑠1𝑗 sin𝜃𝑗 + 𝑣∗𝑠1𝑗 cos𝜃𝑗 + 𝑢∗𝑣1𝑗 sin𝜃𝑗 + 𝑣∗𝑣1𝑗 cos𝜃𝑗

)ª®¬ sin𝜃1

= − ©­«𝑉∞ cos 𝛼 +
𝑁∑
𝑗=1

(
𝑢∗𝑠𝑁 𝑗 cos𝜃𝑗 − 𝑣∗𝑠𝑁 𝑗 sin𝜃𝑗 + 𝑢∗𝑣𝑁 𝑗 cos𝜃𝑗 − 𝑣∗𝑣𝑁 𝑗 sin𝜃𝑗

)ª®¬ cos𝜃𝑁

− ©­«𝑉∞ sin 𝛼 +
𝑁∑
𝑗=1

(
𝑢∗𝑠𝑁 𝑗 sin𝜃𝑗 + 𝑣∗𝑠𝑁 𝑗 cos𝜃𝑗 + 𝑢∗𝑣𝑁 𝑗 sin𝜃𝑗 + 𝑣∗𝑣𝑁 𝑗 cos𝜃𝑗

)ª®¬ sin𝜃𝑁

(2.227)
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Now the panel velocities (Eqs. 2.208 and 2.213):

©­«𝑉∞ cos 𝛼 +
𝑁∑
𝑗=1

(−𝑞 𝑗
2𝜋 ln

(
𝑟1𝑗+1

𝑟1𝑗

)
cos𝜃𝑗 − 𝑞 𝑗

𝛽1𝑗

2𝜋 sin𝜃𝑗

+𝛾
𝛽1𝑗

2𝜋 cos𝜃𝑗 −
𝛾

2𝜋 ln
(
𝑟1𝑗+1

𝑟1𝑗

)
sin𝜃𝑗

))
cos𝜃1

+ ©­«𝑉∞ sin 𝛼 +
𝑁∑
𝑗=1

(−𝑞 𝑗
2𝜋 ln

(
𝑟1𝑗+1

𝑟1𝑗

)
sin𝜃𝑗 + 𝑞 𝑗

𝛽1𝑗

2𝜋 cos𝜃𝑗

+𝛾
𝛽1𝑗

2𝜋 sin𝜃𝑗 +
𝛾

2𝜋 ln
(
𝑟1𝑗+1

𝑟1𝑗

)
cos𝜃𝑗

))
sin𝜃1

= − ©­«𝑉∞ cos 𝛼 +
𝑁∑
𝑗=1

(−𝑞 𝑗
2𝜋 ln

(
𝑟𝑁𝑗+1

𝑟𝑁𝑗

)
cos𝜃𝑗 − 𝑞 𝑗

𝛽𝑁𝑗
2𝜋 sin𝜃𝑗

+𝛾
𝛽𝑁𝑗
2𝜋 cos𝜃𝑗 −

𝛾

2𝜋 ln
(
𝑟𝑁𝑗+1

𝑟𝑁𝑗

)
sin𝜃𝑗

))
cos𝜃𝑁

− ©­«𝑉∞ sin 𝛼 +
𝑁∑
𝑗=1

(−𝑞 𝑗
2𝜋 ln

(
𝑟𝑁𝑗+1

𝑟𝑁𝑗

)
sin𝜃𝑗 + 𝑞 𝑗

𝛽𝑁𝑗
2𝜋 cos𝜃𝑗

+𝛾
𝛽𝑁𝑗
2𝜋 sin𝜃𝑗 +

𝛾

2𝜋 ln
(
𝑟𝑁𝑗+1

𝑟𝑁𝑗

)
cos𝜃𝑗

))
sin𝜃𝑁

(2.228)
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Next we group terms:

𝑉∞(sin 𝛼 sin𝜃1 + cos 𝛼 cos𝜃1)

+
𝑁∑
𝑗=1

[−𝑞 𝑗
2𝜋 ln

(
𝑟1𝑗+1

𝑟1𝑗

) (
cos𝜃𝑗 cos𝜃1 + sin𝜃𝑗 sin𝜃1

)
+𝑞 𝑗

𝛽1𝑗

2𝜋
(
cos𝜃𝑗 sin𝜃1 − sin𝜃𝑗 cos𝜃1

) ]
+

𝑁∑
𝑗=1

[
𝛾
𝛽1𝑗

2𝜋 (sin𝜃𝑗 sin𝜃1 + cos𝜃𝑗 cos𝜃1)

+ 𝛾

2𝜋 ln
(
𝑟1𝑗+1

𝑟1𝑗

)
(cos𝜃𝑗 sin𝜃1 − sin𝜃𝑗 cos𝜃1)

]
= −𝑉∞(cos 𝛼 cos𝜃𝑁 + sin 𝛼 sin𝜃𝑁 )

+
𝑁∑
𝑗=1

[
𝑞 𝑗

2𝜋 ln
(
𝑟𝑁𝑗+1

𝑟𝑁𝑗

)
(cos𝜃𝑗 cos𝜃𝑁 + sin𝜃𝑗 sin𝜃𝑁 )

−𝑞 𝑗
𝛽𝑁𝑗
2𝜋 (cos𝜃𝑗 sin𝜃𝑁 − sin𝜃𝑗 cos𝜃𝑁 )

]
+

𝑁∑
𝑗=1

[
−𝛾

𝛽𝑁𝑗
2𝜋 (sin𝜃𝑗 sin𝜃𝑁 + cos𝜃𝑗 cos𝜃𝑁 )

− 𝛾

2𝜋 ln
(
𝑟𝑁𝑗+1

𝑟𝑁𝑗

)
(cos𝜃𝑗 sin𝜃𝑁 − sin𝜃𝑗 cos𝜃𝑁 )

]

, (2.229)

use trig identities:

𝑉∞ cos(𝜃1 − 𝛼)

+
𝑁∑
𝑗=1

[−𝑞 𝑗
2𝜋 ln

(
𝑟1𝑗+1

𝑟1𝑗

)
cos(𝜃1 − 𝜃𝑗) + 𝑞 𝑗

𝛽1𝑗

2𝜋 sin(𝜃1 − 𝜃𝑗)
]

+
𝑁∑
𝑗=1

[
𝛾
𝛽1𝑗

2𝜋 cos(𝜃1 − 𝜃𝑗) +
𝛾

2𝜋 ln
(
𝑟1𝑗+1

𝑟1𝑗

)
sin(𝜃1 − 𝜃𝑗)

]
= −𝑉∞ cos(𝜃𝑁 − 𝛼)

+
𝑁∑
𝑗=1

[
𝑞 𝑗

2𝜋 ln
(
𝑟𝑁𝑗+1

𝑟𝑁𝑗

)
cos(𝜃𝑁 − 𝜃𝑗) − 𝑞 𝑗

𝛽𝑁𝑗
2𝜋 sin(𝜃𝑁 − 𝜃𝑗)

]
+

𝑁∑
𝑗=1

[
−𝛾

𝛽𝑁𝑗
2𝜋 cos(𝜃𝑁 − 𝜃𝑗) −

𝛾

2𝜋 ln
(
𝑟𝑁𝑗+1

𝑟𝑁𝑗

)
sin(𝜃𝑁 − 𝜃𝑗)

]

, (2.230)
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and simplify

𝑁∑
𝑗=1

[
𝑞 𝑗𝛽1𝑗 sin(𝜃1 − 𝜃𝑗) − 𝑞 𝑗 ln

(
𝑟1𝑗+1

𝑟1𝑗

)
cos(𝜃1 − 𝜃𝑗)

+ 𝑞 𝑗𝛽𝑁𝑗 sin(𝜃𝑁 − 𝜃𝑗) − 𝑞 𝑗 ln
(
𝑟𝑁𝑗+1

𝑟𝑁𝑗

)
cos(𝜃𝑁 − 𝜃𝑗)

+ 𝛾𝛽1𝑗 cos(𝜃1 − 𝜃𝑗) + 𝛾 ln
(
𝑟1𝑗+1

𝑟1𝑗

)
sin(𝜃1 − 𝜃𝑗)

+ 𝛾𝛽𝑁𝑗 cos(𝜃𝑁 − 𝜃𝑗) + 𝛾 ln
(
𝑟𝑁𝑗+1

𝑟𝑁𝑗

)
sin(𝜃𝑁 − 𝜃𝑗)

]
= −2𝜋𝑉∞(cos(𝜃1 − 𝛼) + cos(𝜃𝑁 − 𝛼))

(2.231)

We can write this in the linear form:
𝑁∑
𝑗=1

𝐴𝑁+1, 𝑗𝑞 𝑗 + 𝐴𝑁+1,𝑁+1𝛾 = 𝑏𝑁+1 (2.232)

where

𝐴𝑁+1, 𝑗 =
∑

𝑘=1 and 𝑁

[
𝛽𝑘 𝑗 sin(𝜃𝑘 − 𝜃𝑗) − ln

(
𝑟𝑘 𝑗+1

𝑟𝑘 𝑗

)
cos(𝜃𝑘 − 𝜃𝑗)

]
𝐴𝑁+1,𝑁+1 =

∑
𝑘=1 and 𝑁

©­«
𝑁∑
𝑗=1

[
𝛽𝑘 𝑗 cos(𝜃𝑘 − 𝜃𝑗) + ln

(
𝑟𝑘 𝑗+1

𝑟𝑘 𝑗

)
sin(𝜃𝑘 − 𝜃𝑗)

]ª®¬
𝑏𝑁+1 = −2𝜋𝑉∞ [cos(𝜃1 − 𝛼) + cos(𝜃𝑁 − 𝛼)]

(2.233)

Now we can assemble the no-flow-through conditions and the Kutta
condition in one large matrix:

𝐴11 · · · 𝐴1𝑁 𝐴1,𝑁+1
...

...
...

𝐴𝑁1 · · · 𝐴𝑁𝑁 𝐴𝑁,𝑁+1
𝐴𝑁+1,1 · · · 𝐴𝑁+1,𝑁 𝐴𝑁+1,𝑁+1



𝑞1
...

𝑞𝑁
𝛾


=


𝑏1
...

𝑏𝑁
𝑏𝑁+1


(2.234)

This is a linear system that we can solve for 𝑞 and 𝛾. With known
source and vortex strengths we then compute the pressure coefficient.
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We know the normal velocity is zero at each panel so we just need to
compute the tangential velocity (using Eq. 2.195), substituting in the
velocity components (Eq. 2.216), making a coordinate transformation
(Eq. 2.214), grouping terms, and using trig identities:

𝑉𝑡 𝑖 = 𝑢𝑖 cos𝜃𝑖 + 𝑣𝑖 sin𝜃𝑖

=
©­«𝑉∞ cos 𝛼 +

𝑁∑
𝑗=1

(𝑢𝑠𝑖𝑗 + 𝑢𝑣𝑖𝑗)ª®¬ cos𝜃𝑖 + ©­«𝑉∞ sin 𝛼 +
𝑁∑
𝑗=1

(𝑣𝑠𝑖𝑗 + 𝑣𝑣𝑖𝑗)ª®¬ sin𝜃𝑖

=
©­«𝑉∞ cos 𝛼 +

𝑁∑
𝑗=1

(𝑢∗𝑠𝑖𝑗 cos𝜃𝑗 − 𝑣∗𝑠𝑖𝑗 sin𝜃𝑗 + 𝑢∗𝑣𝑖𝑗 cos𝜃𝑗 − 𝑣∗𝑣𝑖𝑗 sin𝜃𝑗)ª®¬ cos𝜃𝑖

+ ©­«𝑉∞ sin 𝛼 +
𝑁∑
𝑗=1

(𝑢∗𝑠𝑖𝑗 sin𝜃𝑗 + 𝑣∗𝑠𝑖𝑗 cos𝜃𝑗 + 𝑢∗𝑣𝑖𝑗 sin𝜃𝑗 + 𝑣∗𝑣𝑖𝑗 cos𝜃𝑗
ª®¬ sin𝜃𝑖

= 𝑉∞ cos(𝜃𝑖 − 𝛼)

+
𝑁∑
𝑗=1

[
𝑢∗𝑠𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) + 𝑣∗𝑠𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗) + 𝑢∗𝑣𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) + 𝑣∗𝑣𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗)

]
(2.235)

We now substitute in the panel velocities (Eqs. 2.208 and 2.213):

= 𝑉∞ cos(𝜃𝑖 − 𝛼)

+
𝑁∑
𝑗=1

[−𝑞 𝑗
2𝜋 ln

(
𝑟𝑖 𝑗+1

𝑟𝑖 𝑗

)
cos(𝜃𝑖 − 𝜃𝑗)

+ 𝑞 𝑗
𝛽𝑖 𝑗
2𝜋 sin(𝜃𝑖 − 𝜃𝑗)

+ 𝛾
𝛽𝑖 𝑗
2𝜋 cos(𝜃𝑖 − 𝜃𝑗)

+ 𝛾

2𝜋 ln
(
𝑟𝑖 𝑗+1

𝑟𝑖 𝑗

)
sin(𝜃𝑖 − 𝜃𝑗)

]
(2.236)
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The final result is then:

𝑉𝑡 𝑖 = 𝑉∞ cos(𝜃𝑖 − 𝛼)

+ 1
2𝜋

𝑁∑
𝑗=1

[
𝑞 𝑗

(
𝛽𝑖 𝑗 sin(𝜃𝑖 − 𝜃𝑗) − ln

(
𝑟𝑖 𝑗+1

𝑟𝑖 𝑗

)
cos(𝜃𝑖 − 𝜃𝑗)

)]
+ 𝛾

2𝜋

𝑁∑
𝑗=1

[
𝛽𝑖 𝑗 cos(𝜃𝑖 − 𝜃𝑗) + ln

(
𝑟𝑖 𝑗+1

𝑟𝑖 𝑗

)
sin(𝜃𝑖 − 𝜃𝑗)

]

(2.237)

The pressure coefficient is then given by (since the normal velocity
is zero):

𝐶𝑝(𝑥̄𝑖 , 𝑥̄ 𝑗) = 1 −
(
𝑉𝑡𝑖

𝑉∞

)2
(2.238)

and is assumed to be constant over a given panel.



3Viscous Flow

In the last chapter we saw that panel methods are an effective technique
for irrotational flows, a reasonable assumption for attached, low speed
flows, outside the boundary layer. To extend the utility of the methods
we turn our attention to numerical methods for resolving boundary
layers and computing drag.

3.1 Boundary Layer Fundamentals

The presence of viscosity alters flow behavior. Recall the discussion
on shear stress and the no slip condition discussed in Section 1.3. The
shear stress is proportional to the velocity gradients (Eq. 1.10). Because
the velocity is zero at a solid wall, near the wall the velocity gradients
will be large, and thus the shear stresses will be significant. For a
streamlined body, only this near-wall region is significantly affected by
viscosity — a region we call the boundary layer. It is called the boundary
layer because it only occurs near the boundary of the solid object, and
is generally small relative to the size of the body.

Within the boundary layer viscous effects are important, and outside
of the boundary layer we can treat the flow as inviscid. This behavior
allows us to re-use the inviscid flow behavior studied in the previous
chapter, with some modifications confined to a small region. To be
clear, the behavior is continuous and there is no actual clear line that
divides viscous behavior from inviscid. Still, it will be useful to define
a boundary layer “height”, and we will discuss a few definitions for
boundary layer size in this chapter.

For blunt bodies, or streamlined bodies at high angles of attack
(which act like a blunt body), flow separation occurs and a wake
develops. Once flow separation occurs there is no longer a boundary
layer and viscous behavior extends across a large region comparable to
the body size. We can no longer “correct” inviscid flow solutions as the
viscous effects are widespread.

Figure 3.1 depicts many of the features seen in a boundary layer
and viscous flows in general. For now we will just run through a
quick overview, and subsequently will discuss these features in more
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laminar

turbulent

Fig. 3.2 An overlaid laminar and tur-
bulent boundary layer.

detail. Starting from a stagnation point the boundary layer begins as
laminar. Over some region the boundary layer instabilities become
significant and the boundary layer transitions to a turbulent boundary
layer. Eventually, the boundary layer will separate from the body and
leave behind a wake. Ideally, for a streamlined body, this separation
occurs right at the trailing edge of the body. From this figure we see
two mechanism for drag. The first, is drag from the shear stresses
acting over the body. We call this skin-friction drag. The second, is the
momentum deficit caused by the wake and depicted on the right of
Fig. 3.1. This deficit leads to a lower pressure on the trailing-edge side,
and we call this pressure drag. It is primarily affected by the shape of
the body. Note that while separation was shown as occurring after
turbulent flow in Fig. 3.1, separation can sometimes occur in the laminar
region.

stagnation 
point

laminar
turbulenttransition

separation

wake
velocity 
deficit

Fig. 3.1 Depiction of salient features
for viscous flow around a body.

The word laminar suggests multiple laminae, or layers. Conceptually,
it is meant to describe flow behavior that acts like multiple distinct
layers passing over each other (i.e., slow layers near the wall and faster
layers away from the wall). In laminar flow there is mixing across
the layers, but it not readily visible as the mixing primarily occurs at
molecular scales. In contrast a turbulent flow has unsteady mixing
across multiple scales (small to large). Because the mixing occurs
on larger scales the flow is affected across a larger region and thus
the boundary layer height is larger as compared to laminar flow (see
Fig. 3.2). Also because a turbulent boundary creates more mixing, the
velocity gradient is larger at the wall, and thus the shear stress at the
wall is also larger (see again Fig. 3.2).

The shear stress at the wall is given by:

𝜏𝑤 = 𝜇
𝜕𝑢

𝜕𝑦

����
𝑦=0

(3.1)

Because we are often interested in normalized values, we normalize
this shear stress in the skin friction coefficient:

𝑐 𝑓 =
𝜏𝑤

1
2𝜌𝑉

2
𝑒

(3.2)
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where 𝑉𝑒 is called the edge velocity, or the velocity just outside of the
boundary layer.

Transition refers to the change from a laminar boundary layer to
a turbulent one. We often think of transition occurring at a specific
point, but it really occurs over a region. The mechanism of transition
is the growth of instabilities in the boundary layer. For low Reynolds
number instabilities are damped (the viscous forces are high relative
to inertial) and the flow remains laminar. For high Reynolds numbers
the instabilities are amplified causing the large-scale mixing of turbu-
lent flow. For a flat plate transition occurs at a Reynolds number of
approximately: 𝑅𝑒 = 2 × 105–3 × 106. As the flow progresses over a
solid surface, the length of the boundary layer becomes longer, and
thus the local Reynolds number grows, eventually leading to transition.

The primary factors that affect transition are discussed below. The
freestream conditions are a significant factor (i.e., density, viscosity,
speed, turbulence level, noise). If the incoming flow is already highly
turbulent, then transition will occur more quickly. Pressure gradients
are a major factor. Even a very small adverse gradient can cause
transition. The surface roughness of the body is another major factor. A
rougher surface will amplify instabilities and lead to earlier transition.
As discussed in the paragraphs following Ex. 1.3, sometimes roughness
elements are intentionally added over a wing to trigger turbulent
flow. Heat transfer is a less common, but potentially important factor.
Cooling can be used to stabilize a boundary layer. Suction and blowing
is an active strategy that is sometimes used to delay boundary layer
transition.

Separation refers to the flow detaching from the surface and creating
a wake. The process is depicted in Fig. 3.3. Recall the discussion
surrounding Fig. 1.8 regarding an adverse pressure gradient. In an
adverse pressure gradient, the fluid near the wall slows down until
eventually the velocity gradient is zero (vertical), the flow separates,
and after that point the flow near the wall may be reversed in the
eddies of the resultant wake. Because the velocity gradient is zero at
the point of separation, the shear stress is also zero (Eq. 3.1). Checking
for zero shear stress is one way to detect separation numerically. This
fact also explains why one should avoid creating stagnation points in
an adverse pressure gradient. Slowing the velocity to zero means the
flow is guaranteed to separate. A common engineering solution is to
use a fairing to avoid the stagnation.

Separation generally leads to a massive increase in drag, and a
significant drop in lift. Once separation occurs, the flow may reattach,
especially if it occurs early on the body. When this occurs, the separation
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Fig. 3.3 Fluid near the wall slows
down until eventually it separates.

Fig. 3.4 Viscosity causes a reduction
in lift curve slope and flow separation
causes stall.

and reattachment points envelope a recirculating region known as a
separation bubble (and because this has to occur early on the body to
provide a chance to reattach, it usually separates in the laminar region,
becomes turbulent then reattaches, and is called a laminar separation
bubble).

As shown in Fig. 3.2, a turbulent boundary layer has higher velocities
closer to the surface, and is thus more resistant to separation. This
creates a common design tradeoff where turbulent flow may be desirable
in delaying pressure drag increases, but at a cost of higher skin friction
drag. A classic example is a golf ball. From Fig. 1.8 we note the
large drop in drag for a cylinder, which occurs after the transition
to turbulence. This is because the turbulent boundary layer delays
separation longer, resulting in a smaller wake, and less pressure drag.
For higher Reynolds numbers, the skin friction drag grows and so the
curve starts to rise again.

For a streamlined body the pressure drag is (hopefully) significantly
smaller than the skin friction drag, and so more substantial laminar
flow may be desirable. However, a 100% laminar flow airfoil is actually
not very useful. For it to not separate it would have to be made very
thin and be restricted to a narrow range of small lift coefficients. So
although laminar flow is desirable to a point, we still want the airfoil to
transition to turbulent flow at some point so it is more robust against
separation across various conditions. Even if separation does not occur,
the presence of viscosity can significantly alter the pressure distribution
(or equivalently can be thought of as altering the effective shape of the
body). We will revisit this idea again later in this chapter.

While the discussion of this section focused on drag, as that is the
primary effect of viscosity, it also affects the lift. Notably the lift curve
slope is often slightly reduced by the presence of viscosity. And, once
separated, a precipitous drop in lift occurs, which is known as stall (see
Fig. 3.4).
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Fig. 3.5 Local coordinates in bound-
ary layer that follow the profile of the
blade.

3.2 Boundary Layer Equations

In this section we would like to deriver a simplified version of the
Navier Stokes equations that is applicable within the boundary layer.
We start with the steady, compressible, 2D Navier Stokes equations
(neglecting the normal shear stresses 𝜏𝑥𝑥 and 𝜏𝑦𝑦 , which are typically
insignificant).

𝜕(𝜌𝑢)
𝜕𝑥

+ 𝜕(𝜌𝑣)
𝜕𝑦

= 0

𝜌

(
𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣 𝜕𝑢

𝜕𝑦

)
= −𝜕𝑝

𝜕𝑥
+ 𝜕

𝜕𝑦

[
𝜇

(
𝜕𝑢

𝜕𝑦
+ 𝜕𝑣

𝜕𝑥

)]
𝜌

(
𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣 𝜕𝑣

𝜕𝑦

)
= −𝜕𝑝

𝜕𝑦
+ 𝜕

𝜕𝑥

[
𝜇

(
𝜕𝑢

𝜕𝑦
+ 𝜕𝑣

𝜕𝑥

)] (3.3)

In the boundary layer, we use the coordinate direction 𝑥 to follow the
surface that the boundary layer is developing on, and 𝑦 as a direction
normal to the local surface (Fig. 3.5). Our first assumption is that we
can still use the Cartesian form of our governing equations shown
above, but with our boundary layer definition of 𝑥 and 𝑦, which are not
actually Cartesian. This assumes that the boundary layer height is very
small relative to the local radius of curvature, a reasonable assumption
for most streamlined shapes (similar like the locally flat assumption of
the ground we might use when predicting local behavior, even though
the Earth surface is curved). A centrifugal pressure gradient term can
be added if the curvature is significant, but for our purposes we will
assume that it is not.

Within the boundary layer we anticipate that some of the terms
are much smaller than others, and thus can be neglected to give us
a simplified set of equations appropriate for analysis only within the
boundary layer. We derive this simplified set of equations by examining
the order of magnitude of each term. We assume that the boundary
layer height (𝛿) is much smaller than the distance the boundary layer
covers (𝐿). Those lengths also provide appropriate length scales for
𝑦 and 𝑥 respectively. We know that the horizontal velocity is 𝑉𝑒 just
outside the boundary layer, by definition, and zero at the surface, so a
typical order of magnitude for the horizontal velocity is 𝑉𝑒 . Then, from
an order-of-magnitude analysis using the continuity equation above
(ignoring the minor changes in density), we know that the two terms
must balance each other so we expect that:

𝑉𝑒

𝐿
∝ 𝑣

𝛿
(3.4)
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Or, in other words:
𝑣 ∝ 𝛿

𝐿
𝑉𝑒 (3.5)

This provides us with a scale for the vertical velocities in the boundary
layer, which we see will be much smaller than the horizontal velocities.

Examining the first and second terms of the 𝑥 momentum equation,
with an order of magnitude analysis, we expect that:

𝜌𝑢
𝜕𝑢

𝜕𝑥
∝ 𝜌𝑉2

𝑒

𝐿
(3.6)

and
𝜌𝑣

𝜕𝑢

𝜕𝑦
∝ 𝜌

𝛿
𝐿
𝑉𝑒
𝑉𝑒

𝛿
∝ 𝜌𝑉2

𝑒

𝐿2 (3.7)

Thus, we see that both of these inertial terms are of similar magnitudes.
Pressure just outside the boundary layer is proportional to the

dynamic pressure of the edge velocity, so we assume that

𝜕𝑝

𝜕𝑥
∝ 𝜌𝑉2

𝑒

𝐿
, (3.8)

which is also of the same magnitude.
The viscous terms are:

𝜕

𝜕𝑦

[
𝜇
𝜕𝑢

𝜕𝑦

]
∝ 𝜇

𝑉𝑒

𝛿2 (3.9)

and
𝜕

𝜕𝑦

[
𝜇
𝜕𝑣

𝜕𝑥

]
∝ 𝜇

𝑉𝑒

𝐿2 (3.10)

Comparing these two terms we see that the first is much larger than the
second, and so the second term can be neglected within the boundary
layer.

We know that we cannot neglect both viscous terms as compared to
our inertial terms, otherwise this wouldn’t be much of a boundary layer,
so that means that those two terms must be of similar magnitudes:

𝜌𝑉2
𝑒

𝐿
∝ 𝜇

𝑉𝑒

𝛿2 (3.11)

or

𝜇 ∝ 𝜌𝑉𝑒𝛿2

𝐿
(3.12)

We can express this in terms of a Reynolds number for the flow just
outside the boundary layer:

𝛿
𝐿
=

1√
𝑅𝑒𝐿

(3.13)
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where 𝑅𝑒𝐿 = 𝜌𝑉𝑒𝐿/𝜇 In other words, are assumption that 𝛿 is small
compared to 𝐿 is analogous to assuming that the Reynolds number is
large.

We now apply the same analysis to the 𝑦 momentum equation. The
order of magnitude analysis results in:

𝜌𝑢
𝜕𝑣

𝜕𝑥
∝ 𝜌𝑉2

𝑒 𝛿

𝐿2 (3.14)

𝜌𝑣
𝜕𝑣

𝜕𝑦
∝ 𝜌𝑉2

𝑒 𝛿

𝐿2 (3.15)

𝜕𝑝

𝜕𝑦
∝ 𝜌𝑉2

𝑒

𝛿
(3.16)

𝜕

𝜕𝑥

[
𝜇
𝜕𝑢

𝜕𝑦

]
∝ 𝜌𝑉2

𝑒 𝛿

𝐿2 (3.17)

𝜕

𝜕𝑥

[
𝜇
𝜕𝑣

𝜕𝑥

]
∝ 𝜌𝑉2

𝑒 𝛿
3

𝐿4 (3.18)

If we factor out 𝜌𝑉2
𝑒 /𝐿 from each term, for easier comparison, we see

that the first, second, and fourth terms are of magnitude 𝛿/𝐿 whereas
the pressure term is of magnitude 1/(𝛿/𝐿), and the last is (𝛿/𝐿)3. In
other words, the pressure term is much larger than all the other terms
and so we can neglect all others except pressure.

Dropping all of the small terms (one viscous term in 𝑥 momentum,
and all but the pressure term in the 𝑦momentum) results in the boundary
layer equations:

𝜕(𝜌𝑢)
𝜕𝑥

+ 𝜕(𝜌𝑣)
𝜕𝑦

= 0

𝜌

(
𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣 𝜕𝑢

𝜕𝑦

)
= −𝜕𝑝

𝜕𝑥
+ 𝜕

𝜕𝑦

(
𝜇
𝜕𝑢

𝜕𝑦

)
𝜕𝑝

𝜕𝑦
= 0

(3.19)

The last equation says that pressure is independent of 𝑦. In other
words, at a given 𝑥 location, the pressure at the surface of the object
will be the same as the pressure at the edge of the boundary layer.
This is quite fortunate as it means the pressure field we find from an
inviscid solution is the same pressure felt directly by the body without
modification by the boundary layer (as long as we account for the
effective shape changes caused by the boundary layer—a topic discussed
later). While the boundary layer equations are an approximation of the
full Navier Stokes equations, experimental data supports this conclusion.
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If pressure is not dependent on 𝑦 then it is only a function of 𝑥 and the
partial derivative becomes a total derivative:

𝜕𝑝

𝜕𝑥
→ 𝑑𝑝

𝑑𝑥
(3.20)

Furthermore, since the pressure just outside the boundary layer, is the
same all the way through the boundary layer (not a function of 𝑦), then
we can compute 𝑑𝑝/𝑑𝑥 just outside the boundary layer. If just outside
the boundary layer, then we can assume the flow is inviscid and use
Euler’s equation. We use the subscript 𝑒 to refer to “edge” properties,
or in other words the inviscid solution just outside the boundary layer.
Euler’s equation gives:

𝑑𝑝

𝑑𝑥
= −𝜌𝑉𝑒

𝑑𝑉𝑒

𝑑𝑥
(3.21)

We substitute the above into the boundary layer equations.

𝜕(𝜌𝑢)
𝜕𝑥

+ 𝜕(𝜌𝑣)
𝜕𝑦

= 0

𝜌

(
𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣 𝜕𝑢

𝜕𝑦

)
= 𝜌𝑉𝑒

𝑑𝑉𝑒

𝑑𝑥
+ 𝜕

𝜕𝑦

(
𝜇
𝜕𝑢

𝜕𝑦

) (3.22)

If will also make the assumption of incompressibility then we can pull
density out of the first equation, and viscosity can come out of the
derivative (normally it is a function of temperature, but if the flow is
incompressible then temperature is constant).

𝜕𝑢

𝜕𝑥
+ 𝜕𝑣

𝜕𝑦
= 0

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣 𝜕𝑢

𝜕𝑦
= 𝑉𝑒

𝑑𝑉𝑒

𝑑𝑥
+ 𝜈

𝜕2𝑢

𝜕𝑦2

(3.23)

Keep in mind, that 𝑉𝑒 is not an unknown, but rather an input from the
outer inviscid solution.

This set of equations is still nonlinear, but it is easier to solve than
the original Navier Stokes equations. The Navier Stokes are an elliptic
PDE because it contains second derivatives in both 𝑥 and 𝑦. Physically,
an elliptic PDE requires defining boundary conditions in all directions.
The boundary layer equations are a parabolic PDE because second
derivatives only appear in one variable, 𝑦. Parabolic PDEs do not
require boundary conditions in all directions, but instead can use a
“time” marching approach (like the wave equation). That means we just
need to specify conditions on one end (i.e., upstream), and then we can
march the solution downstream.
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Even though the equations are simpler, few analytic solutions exist.
We will explore one of these, but for the most part these analytic
solutions are of less interest as their pertain to simplified geometries
and flow conditions. Typically we are interested in arbitrary geometries
and so will use numerical solutions to solve for boundary layers. These
methods are useful as long as the boundary layers remain attached,
and do not have excessive curvature.

3.2.1 Displacement and Momentum Thickness

While we have talked about the “height” of the boundary layer, it is
not clear how we should quantify this, and in fact multiple approaches
exist. The two most important ones are the displacement thickness and
the momentum thickness. The displacement thickness is the distance
we would need to displace the wall so that an exterior inviscid flow
(i.e., at 𝑉𝑒 ) would have the same mass flow rate as that actual flow. For
example, the left side of Fig. 3.6 shows a boundary layer, and the mass
flow deficit is the area colored in red. On the right side of figure we
have an inviscid flow with the body displaced just enough so that the
red area is equal to corresponding area on the left. From the above
definition, 𝛿∗ is the height of the red rectangle on the right.

Fig. 3.6 A depiction of displacement
thickness, where the actual flow is on
the left, and the idealized displace-
ment thickness is shown on the right.

The mass flow rate on the left is:

¤𝑚 =

∫ ℎ

0
𝜌𝑢𝑑𝑦 (3.24)

and on the right the mass flow rate is (we keep the first term as an
integral for convenience in the rest of the derivation):∫ ℎ

0
𝜌𝑒𝑉𝑒𝑑𝑦 − 𝜌𝑒𝑉𝑒𝛿

∗ (3.25)
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actual body

effective body

Fig. 3.7 The displacement thickness
provides an “effective” shape for the
body in a viscous flow.

We now equate these two mass flow rates:∫ ℎ

0
𝜌𝑢𝑑𝑦 =

∫ ℎ

0
𝜌𝑒𝑉𝑒𝑑𝑦 − 𝜌𝑒𝑉𝑒𝛿

∗ (3.26)

Rearraning:

𝜌𝑒𝑉𝑒𝛿
∗ =

∫ ℎ

0
(𝜌𝑒𝑉𝑒 − 𝜌𝑢)𝑑𝑦 (3.27)

Then solving for 𝛿∗ gives:

𝛿∗ =

∫ ℎ

0

(
1 − 𝜌𝑢

𝜌𝑒𝑉𝑒

)
𝑑𝑦 (3.28)

As 𝑦 → ℎ the term 𝜌𝑢 → 𝜌𝑒𝑉𝑒 and so the integrand approaches zero.
Thus, we can extend the integration limits without changing the result.
By convention, since the end limit ℎ is not precise, the integration is
extended to infinity.

𝛿∗ =

∫ ∞

0

(
1 − 𝜌𝑢

𝜌𝑒𝑉𝑒

)
𝑑𝑦 (3.29)

If incompressible, then the densities cancel out.
One physical meaning of the displacement thickness is that it tells

us how much larger we should to make the body in the inviscid flow
simulation to simulate the presence of the boundary layer (Fig. 3.7).
The actual viscous flow experiences a decrease in mass flow because of
the boundary layer, which could be treated as an inviscid flow around
a larger body (larger by the displacement thickness).

Thus, one approach to account for the boundary layer is to first
solve the inviscid flow (e.g., panel method) with the original body to get
𝑉𝑒 , then solve the boundary layer equations to get 𝛿∗, next modify the
body shape using the displacement thickness, and repeat the process
as needed. The main difficulty with this approach is that it requires
modifying the geometry and repaneling the geometry, which can be
challenging and computationally expensive.

An easier, and more common approach, is to keep the geometry as
is but modify the boundary condition using the transpiration velocity.
For the original inviscid flow solution the surface boundary condition is
the no flow through condition 𝑉𝑛 = 0. However, with a boundary layer
we are actually solving the inviscid solution outside of the boundary
layer, and at the edge of the boundary layer the normal velocity is not
necessarily zero. Thus, if can find an expression for 𝑉𝑛 we can use our
original geometry but modify the boundary condition.
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To find an appropriate value for 𝑉𝑛 , we first apply the continuity
equation in the boundary layer:

𝜕(𝜌𝑢)
𝜕𝑥

+ 𝜕(𝜌𝑣)
𝜕𝑦

= 0 (3.30)

and in the external flow:

𝜕(𝜌𝑒𝑉𝑒)
𝜕𝑥

+ 𝜕(𝜌𝑒𝑉𝑛)
𝜕𝑦

= 0 (3.31)

where 𝑉𝑛 is the normal velocity We subtract the second equation from
the first, and integrate across the boundary layer.∫ ℎ

0

𝜕

𝜕𝑥
(𝜌𝑒𝑉𝑒 − 𝜌𝑢)𝑑𝑦 =

∫ ℎ

0

𝜕

𝜕𝑦
(𝜌𝑣 − 𝜌𝑒𝑉𝑛)𝑑𝑦 (3.32)

The order of differentiating and integrating can be swapped for the first
term, and in the second term the integral and differentiation cancel out.

𝜕

𝜕𝑥

[
𝜌𝑒𝑉𝑒

(∫ ℎ

0

(
1 − 𝜌𝑢

𝜌𝑉𝑒

)
𝑑𝑦

)]
= [𝜌𝑣 − 𝜌𝑒𝑉𝑒]ℎ0 (3.33)

= (𝜌𝑒𝑉𝑛 − 𝜌𝑒𝑉𝑛) − (0 − 𝜌𝑒𝑉𝑛) (3.34)
= 𝜌𝑒𝑉𝑛 (3.35)

The term in parenthesis on the left is the displacement thickness. Thus,
we have our new boundary condition:

𝑉𝑛 =
1
𝜌𝑒

𝑑

𝑑𝑥
(𝜌𝑒𝑉𝑒𝛿∗) (3.36)

For incompressible flow this simplifes to:

𝑉𝑛 =
𝑑

𝑑𝑥
(𝑉𝑒𝛿∗) (3.37)

The alternate procedure then is to analyze the geometry using an
inviscid analysis to obtain 𝑉𝑒 , then solve the boundary layer equations
to obtain 𝛿∗, next reanalyze the inviscid analysis using the modified
boundary condition (with fixed geometry/paneling), and repeat as
needed. Rather than a fixed point iteration, a more effective approach
is to solve the equations in a coupled manner using Newton’s method.

An alternative measure of boundary layer height is the momentum
thickness, which we call 𝜃. This is the distance we would need to
displace the wall so that an exterior inviscid flow (i.e., at 𝑉𝑒) would
have the same momentum flow rate as that actual flow.
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On the left of Fig. 3.8 the true momentum flow rate is:∫ ℎ

0
𝜌𝑢2𝑑𝑦 (3.38)

On the right side the momentum flow of this hypothetical scenario is:

¤𝑚𝑉𝑒 − 𝜌𝑒𝑉
2
𝑒 𝜃 (3.39)

where the mass flow rate is reduced because of the displacement as
shown in Eq. 3.24. Inserting that equation gives the following for the

Fig. 3.8 A depiction of momentum
thickness, where the actual flow is on
the left, and the idealized momentum
thickness is shown on the right.

right hand side: ∫ ℎ

0
𝜌𝑢𝑉𝑒𝑑𝑦 − 𝜌𝑒𝑉

2
𝑒 𝜃 (3.40)

Equating the two momentum flow rates gives:∫ ℎ

0
𝜌𝑢2𝑑𝑦 =

∫ ℎ

0
𝜌𝑢𝑉𝑒𝑑𝑦 − 𝜌𝑒𝑉

2
𝑒 𝜃 (3.41)

Rearranging

𝜌𝑒𝑉
2
𝑒 𝜃 =

∫ ℎ

0
(𝜌𝑢𝑉𝑒 − 𝜌𝑢2)𝑑𝑦 (3.42)

then solving for 𝜃 and again extending the upper limit to infinity gives:

𝜃 =

∫ ∞

0

𝜌𝑢

𝜌𝑒𝑉𝑒

(
1 − 𝑢

𝑉𝑒

)
𝑑𝑦 (3.43)

The primary usefulness of the momentum thickness is that it is a
measure of momentum deficit, and thus is directly related to drag. For
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example, the skin friction drag on a flat plate is proportional to the
momentum thickness at the end of the plate:

𝐷′ = 𝜌𝑉2
𝑒 𝜃𝐿 (3.44)

where 𝜃𝐿 indicates the momentum thickness at 𝑥 = 𝐿.

3.2.2 Laminar Flat Plate: Blasius Solution

There are a few analytic solutions to the boundary layer equations, and
one that is particularly useful is the Blasius solution. It is a solution
to laminar, incompressible, boundary layers over a flat plate with no
pressure gradient. In this text we are less interested in analytic solutions
to simple geometries and more interested in numerical solutions around
arbitrary shapes so we will skip the derivation.

The results are:

𝛿∗ =
1.72𝑥√
𝑅𝑒𝑥

(3.45)

𝜃 =
0.664𝑥√
𝑅𝑒𝑥

(3.46)

where
𝑅𝑒𝑥 =

𝜌𝑉𝑥

𝜇
(3.47)

is the local Reynolds number.
The local skin friction coefficient is:

𝑐 𝑓 =
𝜏
𝑞∞

=
0.664√
𝑅𝑒𝑥

(3.48)

and the total skin friction coefficient, integrated across the plate, is:

𝐶 𝑓 =
1
𝑞∞𝐿

∫ 𝐿

0
𝜏𝑑𝑥 =

1
𝐿

∫ 𝐿

0
𝑐 𝑓 𝑑𝑥 =

1.328√
𝑅𝑒𝐿

(3.49)

Notice the 1/
√
𝑥 behavior of the skin friction coefficient, suggesting

that most of the skin friction drag occurs near the leading edge (at least
within the laminar portion of the boundary layer).

The boundary layer equations can be solved for compressible laminar
boundary layers also, but the result is a set of coupled ODEs that requires
a numerical solution.

3.2.3 Turbulent Flat Plate: Schlichting

There is no analytic solution to turbulent boundary layers, so instead
we rely on empirical fits. There are many such fits, one popular one
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Fig. 3.9 A control volume within a
boundary layer.

was developed by Schlichting for turbulent incompressible boundary
layers on flat plates without a pressure gradient.

𝛿∗ =
0.046𝑥
𝑅𝑒0.2

𝑥

(3.50)

𝜃 =
0.036𝑥
𝑅𝑒0.2

𝑥

(3.51)

𝑐 𝑓 =
0.0592
𝑅𝑒0.2

𝑥

(3.52)

𝐶 𝑓 =
0.074
𝑅𝑒0.2

𝐿

(3.53)

Notice that, as expected, the boundary layer height and skin friction
increases faster with 𝑥 for a turbulent boundary layer as opposed to
laminar.

3.2.4 Momentum Integral Equation

Exact solutions of the boundary layer equations are difficult to impossi-
ble in general cases. One of the main quantities we are interested in,
with regards to a boundary layer analysis, is drag. An integral approach
allows us to approximate the skin friction drag in a boundary layer. Just
like differential and integral forms of the governing equation are both
useful, we will derive an integral form of the mass and momentum
equations within the boundary layer.

We consider a general case, and only at the end simplify for in-
compressible flow. Consider a control volume as shown in Fig. 3.9 for
a small slice of the boundary layer. The control volume has a small
width Δ𝑥 → 0, and it extends until the boundary layer reaches the edge
velocity (or using standard boundary layer notation as 𝑦/𝛿 → ∞). We
will apply a mass and momentum balance to this control volume.

Steady mass balance:

The standard equation for a steady mass balance is:∫
𝜌 ®𝑉 · 𝑑 ®𝐴 = 0 (3.54)

There is a boundary layer profile coming in on the left, and a different
one leaving on the right, and there is also potentially some vertical
velocity𝑉𝑛 of unknown magnitude and sign leaving through the top of
the control volume as noted on the figure.

−
∫ ℎ

0
𝜌𝑢𝑑𝑦 +

∫ ℎ

0

(
𝜌𝑢 + 𝜕(𝜌𝑢)

𝜕𝑥
Δ𝑥

)
𝑑𝑦 + 𝜌𝑒𝑉𝑛Δ𝑥 = 0 (3.55)
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The first integral cancels with part of the second integral, and then Δ𝑥

cancels out of the remaining terms leaving:∫ ℎ

0

𝜕(𝜌𝑢)
𝜕𝑥

𝑑𝑦 + 𝜌𝑒𝑉𝑛 = 0 (3.56)

Thus, we can solve for the unknown vertical velocity at the edge of the
boundary layer.

𝑉𝑛 = − 1
𝜌𝑒

∫ ℎ

0

𝜕(𝜌𝑢)
𝜕𝑥

𝑑𝑦 (3.57)

Steady momentum balance in the x-direction:

The general form for a steady momentum balance in the x-direction is:∫
𝜌𝑉𝑥( ®𝑉 · 𝑑 ®𝐴) = −

∫
𝑝𝑑 ®𝐴𝑥 + 𝐹𝑥 (3.58)

Applying to our situation yields:

−
∫ ℎ

0
𝜌𝑢2𝑑𝑦 +

∫ ℎ

0

(
𝜌𝑢2 + 𝜕(𝜌𝑢2)

𝜕𝑥
Δ𝑥

)
𝑑𝑦 +𝑉𝑒𝜌𝑒𝑉𝑛Δ𝑥 =∫ ℎ

0
𝑝𝑑𝑦 −

∫ ℎ

0

(
𝑝 + 𝜕𝑝

𝜕𝑥
Δ𝑥

)
𝑑𝑦 − 𝜏Δ𝑥

(3.59)

Most of the terms are straightforward. The mass flow rate out of the
top is the same, but is multiplied by its x-component of velocity 𝑉𝑒 .
The pressure on the top surface is unknown, but because it is a vertical
face it does not contribute any force in the x-direction. The shear stress
creates a force on the fluid in the negative x-direction.

We can cancel terms just like in the mass balance:∫ ℎ

0

𝜕(𝜌𝑢2)
𝜕𝑥

𝑑𝑦 +𝑉𝑒𝜌𝑒𝑉𝑛 = −
∫ ℎ

0

𝜕𝑝

𝜕𝑥
𝑑𝑦 − 𝜏 (3.60)

Solving for 𝜏 and substituting in 𝑉𝑛 from the mass balance (Eq. 3.57)
gives the following expression for the shear stress:

𝜏 = −
∫ ℎ

0

𝜕𝑝

𝜕𝑥
𝑑𝑦 −

∫ ℎ

0

𝜕(𝜌𝑢2)
𝜕𝑥

𝑑𝑦 +𝑉𝑒
∫ ℎ

0

𝜕(𝜌𝑢)
𝜕𝑥

𝑑𝑦 (3.61)

Euler (outside boundary layer)

We can remove the pressure by using the 1D Euler momentum equation
in differential form. Because we are considering the flow outside of the
boundary layer, the flow is inviscid and so the Euler equation applies:

𝑑𝑝 = −𝜌𝑉𝑑𝑉 (3.62)
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Thus,
𝑑𝑝𝑒

𝑑𝑥
= −𝜌𝑒𝑉𝑒

𝑑𝑉𝑒

𝑑𝑥
(3.63)

The pressure derivative in Eq. 3.61 is actual a total derivative (and
not a partial derivative) because according to the boundary layer
approximation (𝑑𝑝/𝑑𝑦 = 0) so 𝑝 is only a function of 𝑥. Also the value
of 𝑝 is constant across the boundary layer (thus 𝑝(𝑥) = 𝑝𝑒(𝑥). Thus, we
can substitute this equation directly in.

Simplifying

Substituting this result back into Eq. 3.61 yields

𝜏 =

∫ ℎ

0
𝜌𝑒𝑉𝑒

𝑑𝑉𝑒

𝑑𝑥
𝑑𝑦 −

∫ ℎ

0

𝜕(𝜌𝑢2)
𝜕𝑥

𝑑𝑦 +𝑉𝑒
∫ ℎ

0

𝜕(𝜌𝑢)
𝜕𝑥

𝑑𝑦 (3.64)

We can swap out the last term by using the chain rule:

𝜕(𝜌𝑢𝑉𝑒)
𝜕𝑥

= 𝜌𝑢
𝜕𝑉𝑒
𝜕𝑥

+𝑉𝑒
𝜕(𝜌𝑢)
𝜕𝑥

(3.65)

Rearranging:

𝑉𝑒
𝜕(𝜌𝑢)
𝜕𝑥

=
𝜕(𝜌𝑢𝑉𝑒)

𝜕𝑥
− 𝜌𝑢

𝜕𝑉𝑒
𝜕𝑥

(3.66)

Substituting this result into Eq. 3.64 (and noting that 𝑉𝑒 does not vary
with 𝑦 by definition and so the derivative is a total derivative) yields:

𝜏 =

∫ ℎ

0
𝜌𝑒𝑉𝑒

𝑑𝑉𝑒

𝑑𝑥
𝑑𝑦 −

∫ ℎ

0

𝜕(𝜌𝑢2)
𝜕𝑥

𝑑𝑦 +
∫ ℎ

0

(
𝜕(𝜌𝑢𝑉𝑒)

𝜕𝑥
− 𝜌𝑢

𝑑𝑉𝑒

𝑑𝑥

)
𝑑𝑦

(3.67)
We now collect like terms

𝜏 =

∫ ℎ

0
(𝜌𝑒𝑉𝑒 − 𝜌𝑢)𝑑𝑉𝑒

𝑑𝑥
𝑑𝑦 +

∫ ℎ

0

𝜕(𝜌𝑢(𝑉𝑒 − 𝑢))
𝜕𝑥

𝑑𝑦 (3.68)

In the first integral we note that 𝑑𝑉𝑒/𝑑𝑥 is independent of 𝑦 and can thus
be pulled out of the integral. We then multiply and divide that term by
𝜌𝑒𝑉𝑒 . For the second integral, we reverse the order of integration and
differentiation, and multiply and divide that term by 𝜌𝑒𝑉2

𝑒

𝜏 =
𝑑𝑉𝑒

𝑑𝑥
𝜌𝑒𝑉𝑒

∫ ℎ

0

(
1 − 𝜌𝑢

𝜌𝑒𝑉𝑒

)
𝑑𝑦 + 𝜕

𝜕𝑥

(
𝜌𝑒𝑉

2
𝑒

∫ ℎ

0

𝜌𝑢

𝜌𝑒𝑉𝑒

(
1 − 𝑢

𝑉𝑒

)
𝑑𝑦

)
(3.69)

We see that the first integral is the definition of the displacement
thickness 𝛿∗, and the second integral is the definition of the momentum
thickness 𝜃.

𝜏 =
𝑑𝑉𝑒

𝑑𝑥
𝜌𝑒𝑉𝑒𝛿

∗ + 𝜕

𝜕𝑥

(
𝜌𝑒𝑉

2
𝑒 𝜃

)
(3.70)
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Expanding the second derivative and noting the the partial derivative
is a total derivative since all of the quantities do not change in 𝑦 results
in:

𝜏 =
𝑑𝑉𝑒

𝑑𝑥
𝜌𝑒𝑉𝑒𝛿

∗ + 𝜌𝑒𝑉
2
𝑒

𝑑𝜃
𝑑𝑥

+ 2𝜌𝑒𝑉𝑒
𝑑𝑉𝑒

𝑑𝑥
𝜃 +

𝑑𝜌𝑒
𝑑𝑥

𝑉2
𝑒 𝜃 (3.71)

Dividing by 𝜌𝑒𝑉2
𝑒 and collecting like terms gives:

𝜏

𝜌𝑒𝑉2
𝑒

=
𝑑𝑉𝑒

𝑑𝑥

1
𝑉𝑒

(𝛿∗ + 2𝜃) + 𝑑𝜃
𝑑𝑥

+ 𝑑𝜌𝑒
𝑑𝑥

1
𝜌𝑒

𝜃 (3.72)

We now multiply the first term by 1/2 on the top and bottom and
use the definition of the local skin friction coefficient. For the second
term we factor out 𝜃 and define a new variable called the shape factor:
𝐻 = 𝛿∗/𝜃. The variable 𝐻 is related to the “health” of the boundary
layer (with smaller 𝐻 as healthier). A flat plate, for example, has a
value of 𝐻 < 2.59 for a favorable pressure gradient, and 𝐻 > 2.59 for
an adverse one. As 𝐻 exceeds approximately 2.2 a laminar boundary
layer will typically transition, whereas a turbulent boundary layer will
typically separate.

1
2 𝑐 𝑓 =

𝑑𝑉𝑒

𝑑𝑥

𝜃
𝑉𝑒

(𝐻 + 2) + 𝑑𝜃
𝑑𝑥

+ 𝑑𝜌𝑒
𝑑𝑥

1
𝜌𝑒

𝜃 (3.73)

Finally, we would like to relate the derivative of density to the derivative
of velocity. If we assume that the flow outside the boundary layer is
isentropic (an assumption that is consistent with the irrotationality
assumption), that we can use the isentropic relationship

𝑝

𝜌𝛾 = constant (3.74)

Taking derivatives yields:

𝑑𝑝

𝑑𝑥
=

𝛾𝑝

𝜌

𝑑𝜌

𝑑𝑥
(3.75)

Using the definition of the speed of sound gives

𝑑𝑝

𝑑𝑥
= 𝑎2 𝑑𝜌

𝑑𝑥
(3.76)

We again, make use of Euler’s equation (since the flow can be assumed
inviscid outside of the boundary layer), to relate pressure to velocity:

𝑑𝑝

𝑑𝑥
= 𝑎2 𝑑𝜌

𝑑𝑥
= −𝜌𝑉 𝑑𝑉

𝑑𝑥
(3.77)

Thus,
𝑑𝜌𝑒
𝑑𝑥

= −𝜌𝑒𝑀2
𝑒

1
𝑉𝑒

𝑑𝑉𝑒

𝑑𝑥
(3.78)
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Fig. 3.10 A depiction of the boundary
layer (rotated from our typical per-
spective).

We now substitute this expression into Eq. 3.73

1
2 𝑐 𝑓 =

𝑑𝑉𝑒

𝑑𝑥

𝜃
𝑉𝑒

(𝐻 + 2) + 𝑑𝜃
𝑑𝑥

+ −𝑀2
𝑒

1
𝑉𝑒

𝑑𝑉𝑒

𝑑𝑥
𝜃 (3.79)

We can now combine like terms yielding the final result:

1
2 𝑐 𝑓 =

𝑑𝜃
𝑑𝑥

+ 𝑑𝑉𝑒

𝑑𝑥

𝜃
𝑉𝑒

(
𝐻 + 2 −𝑀2

𝑒

)
(3.80)

This is the Von Kármán Momentum Integral Equation. We’ve been able
to express the mass and momentum balance in a compact equation
relating the important quantities in the boundary layer. If the flow is
incompressible then that means𝑀𝑒 → 0 and we have the incompressible
form:

1
2 𝑐 𝑓 =

𝑑𝜃
𝑑𝑥

+ 𝑑𝑉𝑒

𝑑𝑥

𝜃
𝑉𝑒

(𝐻 + 2) (3.81)

This equation contains too many unknowns to solve by itself (𝜃, H,
𝑐 𝑓 ), but can be solved in connection with empirical relationships for
laminar or turbulent boundary layers.

3.3 Thwaites’ Method: Numerical Solution of Laminar Incom-
pressible Boundary Layers

Consider a generic boundary layer as shown in Fig. 3.10. We typically
draw it with the axes the other way, so that the boundary layer is
vertical, but drawing it this way is more natural to look at the slope and
curvature.

At the wall (𝑦 = 0) we know that 𝑢 = 0 and 𝑣 = 0. The only relevant
velocity scale is𝑉𝑒 and a natural length scale is the momentum thickness
𝜃. Thus, at the wall we expect that:(

𝜕𝑢

𝜕𝑦

)
𝑤

∝ 𝑉𝑒

𝜃
(3.82)

Thwaites postulated that for a laminar boundary layer the proportional-
ity is linear, so we can write this as an equality by multiplying by some
unknown scalar 𝑙. (

𝜕𝑢

𝜕𝑦

)
𝑤

=
𝑉𝑒

𝜃
𝑙 (3.83)

Similarly, we expect the curvature to follow the form:(
𝜕𝑢2

𝜕𝑦2

)
𝑤

∝ −𝑉𝑒
𝜃2 (3.84)
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Again, the assumption is that we can multiply by a unknown scalar (𝜆)
to form an equality: (

𝜕𝑢2

𝜕𝑦2

)
𝑤

= −𝑉𝑒
𝜃2𝜆 (3.85)

In the above we have assumed negative curvature (which is indicative
of a healthy boundary layer), but the sign of 𝜆 will allow the curvature
to change.

We use our boundary layer momentum equation (Eq. 3.23):

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣 𝜕𝑢

𝜕𝑦
= 𝑉𝑒

𝑑𝑉𝑒

𝑑𝑥
+ 𝜈

𝜕2𝑢

𝜕𝑦2 (3.86)

and substitute in values at the wall.

0 = 𝑉𝑒
𝑑𝑉𝑒

𝑑𝑥
− 𝜈

𝑉𝑒

𝜃2𝜆 (3.87)

From the above we find that:

𝜆 =
𝜃2

𝜈
𝑑𝑉𝑒

𝑑𝑥
(3.88)

Recall the momentum integral equation:

𝑐 𝑓

2 =
𝑑𝜃
𝑑𝑥

+ 𝑑𝑉𝑒

𝑑𝑥

𝜃
𝑉𝑒

(𝐻 + 2) (3.89)

Let us relate 𝑐 𝑓 to the velocity gradient at the wall so we can make use
of Eq. 3.83.

𝑐 𝑓

2 =
𝜏𝑤
𝜌𝑉2

𝑒

=
1

𝜌𝑉2
𝑒

𝜇
𝜕𝑢

𝜕𝑦

����
𝑤

=
𝜈

𝑉2
𝑒

𝑉𝑒

𝜃
𝑙 =

𝜈𝑙
𝜃𝑉𝑒

(3.90)

Substitution this into the momentum integral equation, and solving
Eq. 3.88 for 𝑑𝑉𝑒

𝑑𝑥
and substituting that in as well gives:

𝜈𝑙
𝜃𝑉𝑒

=
𝑑𝜃
𝑑𝑥

+ 𝜆𝜈

𝜃2
𝜃
𝑉𝑒

(𝐻 + 2) (3.91)

We move the unknown terms 𝑙, 𝜆 to one side:

𝑉𝑒

𝜈
𝜃
𝑑𝜃
𝑑𝑥

= 𝑙 − 𝜆(𝐻 + 2) (3.92)

Thwaites found that plotting the left hand side (which is nondimen-
sional) for numerous exact solutions of the boundary layer equations
resulted in a remarkably good linear relationship.

𝑉𝑒

𝜈
𝜃
𝑑𝜃
𝑑𝑥

= 0.225 − 3𝜆 (3.93)
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2. Cebeci and Bradshaw, Physical and
Computational Aspects of Convective Heat
Transfer, 1988.

That form suggests that both 𝐻 and 𝑙 are functions of only 𝜆. The above
equations is an ODE that we can use to solve for 𝜃.

𝑑𝜃
𝑑𝑥

= 0.225 𝜈
𝑉𝑒𝜃

− 3𝜆 𝜈
𝑉𝑒𝜃

(3.94)

Finally, substituting in Eq. 3.88 gives the ODE:

𝑑𝜃
𝑑𝑥

=
0.225𝜈
𝑉𝑒𝜃

− 3𝜃
𝑉𝑒

𝑑𝑉𝑒

𝑑𝑥
(3.95)

With some additional algebraic manipulations we can solve this ODE
analytically, however the results requires an integral that typically
still requires a numerical solution. Thus, it is generally easiest just to
numerically solve the ODE using the above expression.

We now need expressions for 𝑙 and 𝐻, which we showed should
be functions only of 𝜆. Notice from Eq. 3.88 that a positive value of 𝜆
corresponds to a favorable pressure gradient (and negative curvature
in the boundary layer Eq. 3.85). The opposite is true for negative 𝜆,
thus we expect as 𝜆 becomes increasingly negative the boundary layer
will transition (or possibly separate). Data fits for 𝑙 and 𝐻 come from
Cebeci and Bradshaw 2:

𝑙 = 0.22 + 1.57𝜆 − 1.8𝜆2

𝐻 = 2.61 − 3.75𝜆 − 5.24𝜆2

}
if 0 ≤ 𝜆 ≤ 0.1 (3.96)

𝑙 = 0.22 + 1.402𝜆 + 0.018𝜆
0.107 + 𝜆

𝐻 = 2.088 + 0.0731
0.14 + 𝜆

 if − 0.1 < 𝜆 < 0 (3.97)

If 𝜆 ≤ −0.1 then laminar separation is predicted. The data fits do not
extend beyond 𝜆 > 0.1, but we can just use the value at 𝜆 = 0.1 for
larger values of 𝜆.

Once, we solve the ODE for 𝜃 we compute 𝜆 from Eq. 3.88, 𝑙 and 𝐻
from the above expressions, and 𝛿∗ from the definition of 𝐻 (𝐻 = 𝛿∗/𝜃).
The skin friction coefficient we compute from Eq. 3.90:

𝑐 𝑓 =
2𝜈𝑙
𝜃𝑉𝑒

(3.98)

The only remaining piece needed to solve the ODE is an inital condition.
For a flat plate the initial boundary layer height is zero. In the analytic
form we can use that directly, but for the numerical solution starting
from 𝜃0 = 0 causes numerical problems as can be seen from Eq. 3.95.

https://dx.doi.org/10.1007/978-1-4612-3918-5
https://dx.doi.org/10.1007/978-1-4612-3918-5
https://dx.doi.org/10.1007/978-1-4612-3918-5
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Instead we can start from small value like 𝑥0 = 10−6 and initialize 𝜃0
with the corresponding height from the Blasius solution:

𝜃0 =
0.664𝑥0√
𝑅𝑒𝑥0

(3.99)

For an airfoil the boundary layer height is nonzero at the stagnation
point (bottom half of Fig. 3.11). Moran derives an expression for the
initial height at a stagnation point based on a Taylor series expansion
of the edge velocity 3. The result is:

𝜃0 =

[
0.075𝜈

(𝑑𝑉𝑒/𝑑𝑥)0

]1/2
(3.100)

Fig. 3.11 Boundary layer height starts
from zero for a flat plate, but has a
nonzero height for an airfoil at the
stagnation point.

The ODE should be terminated if there is laminar separation
(𝜆 < −0.1 as discussed above), or when transition is predicted (see
Section 3.5.1).

Analytic Solution The above presentation focused on a numerical
solution of the ODE, but it can also be solved analytically. The nu-
merical solution is clearer, and more naturally leads to reusing similar
methodology for the turbulent boundary layer solution (which must
be solved numerically). However for hand calculations an analytic
solution can be useful.

Starting with Eq. 3.95 moving one term to the other side and
multiplying through by 2𝜃𝑉6

𝑒 gives:

𝑑𝜃
𝑑𝑥

+ 3𝜃
𝑉𝑒

𝑑𝑉𝑒

𝑑𝑥
=

0.225𝜈
𝑉𝑒𝜃

(3.101)

2𝜃 𝑑𝜃
𝑑𝑥
𝑉6
𝑒 + 6𝜃2𝑉5

𝑒

𝑑𝑉𝑒

𝑑𝑥
= 0.45𝜈𝑉5

𝑒 (3.102)

𝑑

𝑑𝑥
(𝜃2𝑉6

𝑒 ) = 0.45𝜈𝑉5
𝑒 (3.103)
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Now we integrate from 0 the starting point of boundary layer to 𝑥𝑝 the
𝑥 point along the boundary layer we wish to evaluate at:∫ 𝑥𝑝

0

𝑑

𝑑𝑥
(𝜃2𝑉6

𝑒 )𝑑𝑥 =

∫ 𝑥𝑝

0
0.45𝜈𝑉5

𝑒 𝑑𝑥 (3.104)

𝜃2𝑉6
𝑒

��𝑥𝑝
0 =

∫ 𝑥𝑝

0
0.45𝜈𝑉5

𝑒 𝑑𝑥 (3.105)

𝜃(𝑥𝑝)2 =
𝜃2

0𝑉𝑒
6
0

𝑉𝑒(𝑥𝑝)6
+ 0.45𝜈
𝑉𝑒(𝑥𝑝)6

∫ 𝑥𝑝

0
𝑉𝑒(𝑥)5𝑑𝑥 (3.106)

This expression provides an integral-based solution to solve for the
momentum thickness at any point, as an alternative from the ODE
approach.

3.4 Head’s Method: Numerical Solution of Turbulent Incom-
pressible Boundary Layers

A corresponding approach for turbulent boundary layers is Head’s
method. There is an improved method called Green’s method, that is
particularly useful if rapid flow changes exist. Its numerical solution is
not any more difficult, but the equations are quite a bit longer, so we
will present Head’s method for simplicity.

We start with the same figure we used in deriving the momentum
integral equation Fig. 3.9, and the intermediate result relating the normal
velocity the velocity gradient across the control volume (Eq. 3.57). In
this case the flow is assumed to be incompressible and so the density is
cancelled out. We also assume that this “entrainment velocity“ is pulled
into the control volume rather than using the default out direction and
so the sign is reversed:

𝑉𝑛 =

∫ 𝛿

0

𝜕𝑢

𝜕𝑥
𝑑𝑦 (3.107)

The integral extends out to some arbitrary distance 𝛿. Head assumed
that the normalized entrainment velocity, was self-similar with the
mean velocity profile, namely with 𝐻.

𝑉𝑛

𝑉𝑒
= 𝑓 (𝐻) (3.108)

Thus, for our boundary layer we have:

𝑉𝑛

𝑉𝑒
=

1
𝑉𝑒

∫ 𝛿

0

𝜕𝑢

𝜕𝑥
𝑑𝑦 = 𝑓 (𝐻) (3.109)
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We now apply a series of algebraic manipulations:

𝜕

𝜕𝑥

∫ 𝛿

0
𝑢𝑑𝑦 = 𝑉𝑒 𝑓 (𝐻) (3.110)

𝜕

𝜕𝑥

∫ 𝛿

0
(𝑉𝑒 −𝑉𝑒 + 𝑢)𝑑𝑦 = 𝑉𝑒 𝑓 (𝐻) (3.111)

𝜕

𝜕𝑥

∫ 𝛿

0
𝑉𝑒

[
1 −

(
1 − 𝑢

𝑉𝑒

)]
𝑑𝑦 = 𝑉𝑒 𝑓 (𝐻) (3.112)

𝜕

𝜕𝑥
(𝑉𝑒(𝛿 − 𝛿∗)) = 𝑉𝑒 𝑓 (𝐻) (3.113)

We define the following new variable for convenience:

𝐻1 =
𝛿 − 𝛿∗

𝜃
(3.114)

The above equation then becomes:

𝑑

𝑑𝑥
(𝑉𝑒𝜃𝐻1) = 𝑉𝑒 𝑓 (𝐻) (3.115)

From experimental measurements Head determined a relationship
for 𝑓 (𝐻) and between 𝐻1 and 𝐻:

𝑓 (𝐻) = 0.306(𝐻1 − 3)−0.6169 (3.116)

𝐻1 =

{
0.8234(𝐻 − 1.1)−1.287 + 3.3 𝐻 ≤ 1.6
1.5501(𝐻 − 0.6778)−3.064 + 3.3 𝐻 > 1.6

(3.117)

To solve the ODE we need to expand Eq. 3.115:

𝑑𝑉𝑒

𝑑𝑥
𝜃𝐻1 +

𝑑𝜃
𝑑𝑥
𝑉𝑒𝐻1 +

𝑑𝐻1
𝑑𝑥

𝑉𝑒𝜃 = 𝑉𝑒 0.0306(𝐻1 − 3)−0.6169 (3.118)

Solving for 𝑑𝐻1/𝑑𝑥 gives:

𝑑𝐻1
𝑑𝑥

=
0.0306

𝜃
(𝐻1 − 3)−0.6169 − 𝑑𝑉𝑒

𝑑𝑥

𝐻1
𝑉𝑒

− 𝑑𝜃
𝑑𝑥

𝐻1
𝜃

(3.119)

This equation is undefined if 𝐻1 < 3 and so we need to protect against
that. An 𝐻1 value that low corresponds to a large 𝐻 (separation) and
so we simply set 𝑑𝐻1/𝑑𝑥 = 0 if that occurs.

We also have the momentum integral equation, which we rearrange
for 𝑑𝜃/𝑑𝑥:

𝑑𝜃
𝑑𝑥

=
𝑐 𝑓

2 − 𝑑𝑉𝑒

𝑑𝑥

𝜃
𝑉𝑒

(𝐻 + 2) (3.120)
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These two equations form a set of coupled linear ODEs where we solve
for 𝐻1 and 𝜃 simultaneously.

The remaining difficulties are that we have 𝐻1 as a function of 𝐻,
but need its inverse, and we have too many unknowns: 𝜃, 𝐻1 and 𝑐 𝑓 .
The equation for 𝐻1 (Eq. 3.117) can be easily inverted:

𝐻 =

{
0.86(𝐻1 − 3.3)−0.777 + 1.1 𝐻1 ≥ 5.3
1.1538(𝐻1 − 3.3)−0.326 + 0.6778 𝐻1 < 5.3

(3.121)

These equations are undefined if 𝐻1 < 3.3. As 𝐻1 approaches 3.3 from
above, the value of𝐻 approaches infinity (corresponding to separation).
Thus, if 𝐻1 < 3.3 we could simply return 𝐻 = 3.0 (a typical large value
for 𝐻 corresponding to separation).

The skin friction coefficient can be estimated using the following
semi-empirical formula:

𝑐 𝑓 = 0.246 × 10−0.678𝐻𝑅𝑒−0.268
𝜃 (3.122)

where
𝑅𝑒𝜃 =

𝑉𝑒𝜃
𝜈

(3.123)

We now need two initial conditions. When the turbulent boundary
layer is initiated from a laminar boundary layer on the same surface we
assume continuity of the momentum thickness. In other words 𝜃0 is
the final value of 𝜃 in the laminar section. After transition the value
of 𝐻 drops. As an initial value, we use the 𝐻 value for a turbulent flat
plate: 𝐻 = 1.28 (see Eqs. 3.50 and 3.51). This value of 𝐻 corresponds to
a starting value of 𝐻1 = 10.6 using Eq. 3.117.

Separation is predicted as 𝐻 becomes large. The skin friction
coefficient from the above formula goes to zero as𝐻 approaches infinity.
Near separation the shape factor increases rapidly, so specifying a
precise number makes little difference. A typical value is to assign
𝐻 = 3 to correspond to separation, in which case the ODE should be
terminated.

3.5 Transition Prediction Methods

Now that we know how to simulate a laminar boundary layer, and a
turbulent boundary layer, we need to be able to predict when transition
occurs. Before discussing a specific method, we discuss the mechanism
of transition and some critical factors.

Transition is fundamentally caused by instability, on in other words
the amplification of disturbances. At low Reynolds numbers, the



3 Viscous Flow 98

viscous forces are large compared to inertial forces so disturbances
that arise are damped. Thus, the flow can remain laminar. For large
Reynolds numbers the viscous forces are comparatively small. In this
case there is not enough damping in the system to prevent rapid growth
in disturbances and so turbulent flow develops. As the Reynolds
number in the boundary layer increases, from an increasing length that
the boundary layer traverses, eventually the disturbances will grow
and turbulence will develop. While we will often predict a point of
transition we should keep in mind that there is no actual point, but
rather a region over which the flow transitions from laminar behavior
to turbulence.

Some of the most relevant factors that affect turbulence are freestream
conditions, surface roughness, and pressure gradients. If the incoming
air is already turbulent or is disturbed to a greater degree, transition
will occur sooner. A rough surface introduces larger and more frequent
disturbances in the flow leading to earlier transition. This affect is
sometimes used intentionally in wind tunnels as discussed in Ex. 1.3.
While favorable pressure gradients can stabilize a boundary layer, as dis-
cussed earlier in this chapter, even a slightly adverse pressure gradient
can induce transition.

Two other factors that affect transition, but don’t as often naturally
are suction/blowing and heating/cooling. Sometimes a device is added
within a wall to suck out the boundary layer, so new air can fill in and
remain laminar longer. Or a device might cool the wall and stabilize
the boundary layer longer. Such devices expend energy so one must
be careful, say on a vehicle, that the device doesn’t use more energy
than it saves through the drag reduction. In other applications, like a
quiet supersonic wind tunnel, the energy savings is not important, but
keeping the boundary layer laminar is important so that disturbances
(i.e., noise) from the turbulent boundary layers on the tunnel’s walls
don’t affect the flow behavior on the test device.

It is not obvious why cooling should stabilize a boundary layer so we
briefly discuss that here. If we apply the compressible boundary layer
equations (Eq. 3.22) at the wall (𝑢 = 𝑣 = 0), and assume no pressure
gradient to isolate the effect of heat transfer, we see that:

0 =
𝜕

𝜕𝑦

(
𝜇
𝜕𝑢

𝜕𝑦

)
𝑤

(3.124)

We now expand the derivative while carefully noting the difference
between 𝜇 (mu) and 𝑢 (note that we drop all of the 𝑤 subscripts for
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4. Wazzan et al., The H-Rx method for
predicting transition, 1981.

Fig. 3.12 Transition Reynolds number
for the 𝐻-𝑅𝑥 method.

simplicity, but all quantities should be evaluated at the wall).

𝜕𝜇

𝜕𝑦

𝜕𝑢

𝜕𝑦
+ 𝜇

𝜕2𝑢

𝜕𝑦2 = 0 (3.125)

As briefly discussed in connection with Thwaite’s method (Section 3.3)
we would like the curvature to be negative for stability. More formally,
stability theory suggests that a point of inflection is unstable at high
Reynolds number, and since the curvature is negative as it approaches
the edge velocity, it should be negative at the wall as well. Solving for
the curvature:

𝜕2𝜇

𝜕𝑦2 = − 1
𝜇

𝜕𝜇

𝜕𝑦

𝜕𝑢

𝜕𝑦
(3.126)

Viscosity is positive, and the velocity gradient at the wall is positive, so
to maintain negative curvature we require the viscosity gradient to be
positive. Viscosity is a function of temperature so we can expand that
derivative as:

𝜕𝜇

𝜕𝑦
=

𝜕𝜇

𝜕𝑇

𝜕𝑇

𝜕𝑦
(3.127)

For a gas, 𝑑𝜇/𝑑𝑇 is positive (opposite for a liquid) so for stability in
the boundary layer we require the temperature gradient moving away
form the wall to be positive. Thus, if we cool the wall we can create a
stronger temperature gradient and delay transition.

3.5.1 Transition Prediction Methods

The 𝑒𝑛 method is perhaps the best method for predicting transition,
but is more complex than the methods discussed in this section. The
𝐻-𝑅𝑥 method developed by Wazzan 4 uses the 𝑒𝑛 method (with 𝑛 = 9)
with a range of pressure gradients, surface heating, and suction. The
results and then parametrized as a function of the shape factor. The
result is a simple method that works well across a wide range of 2D
(and axisymmetric) flows.

The local Reynolds number is:

𝑅𝑒𝑥 =
𝑉𝑒𝑥

𝜈
(3.128)

and transition is predicted if 2.1 < 𝐻 < 2.8 and

log10(𝑅𝑒𝑥) > −40.4557 + 64.8066𝐻 − 26.7538𝐻2 + 3.3819𝐻3 (3.129)

This relationship is visualized in Fig. 3.12. We see that as 𝐻 increases
then the critical transition Reynolds number decreases (i.e., transition
occurs sooner).
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5. Coder and Maughmer, Numerical
Validation of the Squire–Young Formula for
Profile-Drag Prediction, 2015.

The type of transition captured by these methods is caused by
Tollmien-Schlichting (TS) waves, and is only relevant for two-dimensional
flows. Predicting transition in three dimensions is much more com-
plicated and must consider crossflow instabilities and attachment line
instabilities.

3.6 Drag Prediction

One of the main purposes of developing the boundary layer is to predict
drag. Since we can compute 𝑐 𝑓 throughout the boundary layer, we
can integrate that along the surface. However, that integration will
only give us the skin friction drag (and not pressure drag). Instead, a
particularly effective method is the Squire and Young formula.

𝑐𝑑 =
2𝜃𝑇𝐸
𝑐

(
𝑉𝑒𝑇𝐸
𝑉∞

) 𝐻𝑇𝐸+5
2

(3.130)

where the subscript 𝑇𝐸 indicates the end of the boundary layer proper-
ties at the trailing edge. The formula must be applied over the upper
and lower surfaces separately and added together. This formula gives
total 2D viscous drag (sum of skin friction and pressure drag). If we
wanted to separate out the two components we could integrate the skin
friction drag as discussed above, then subtract that value from this total
drag to get the pressure component.

Compaisons of this formula against against RANS CFD simulations
for a variety of airfoils has suggested agreement in drag predictions
within 2-3% (until stall is approached)5. This is remarkably good
agreement for such a simple formula. Some comparisons from their
paper are shown in Fig. 3.13.

3.7 Turbulence

To initiate a discussion on turbulence, consider the two jet flows shown
in Fig. 3.14 and note the similarities and differences. One observation
is that turbulent structures exist at multiple length scales, and that we
notice smaller length scales at the higher Reynolds number. On the
left, we see larger turbulent structures, and on the right, with a higher
Reynolds number, we see much smaller turbulent structures. Another
observation is that the large-scale features (e.g., spreading angle) seem
to be largely independent of the Reynolds number.

These are general characteristics. Large-scale features are generally
independent of Reynolds number, but the details of the turbulent

https://dx.doi.org/10.2514/1.C033021
https://dx.doi.org/10.2514/1.C033021
https://dx.doi.org/10.2514/1.C033021
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Fig. 3.13 Figure from Coder and
Maughmer.5

Fig. 3.14 The mixing transition in tur-
bulent flows, Paul E. Dimotakis

structure are highly Reynolds number dependent, with smaller scales
appearing as Reynolds number increases. This behavior creates the
difficulty in simulating high Reynolds number flows—we have to
resolve increasingly smaller and smaller scales.

3.7.1 Direct Numerical Simulation

In direct numerical simulation (DNS) we resolve all spatial and temporal
scales of the flow (the smallest scales are known as the Kolmogorov scale
as will be discussed later). Thus, we solve the Navier–Stokes equations
without the need for any turbulence model. The cost of DNS scales
with 𝑅𝑒3. Currently, this approach is only practical on very simple
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*This video shows a DNS simulation for
a small portion of a turbulent boundary
layer and gives some appreciation for the
scales and complexity involved: https://
youtu.be/4KeaAhVoPIw.

geometries with low Reynolds numbers (approximately 𝒪(103)).*

3.7.2 Reynolds Averaged Navier Stokes and Turbulence Models

Most aerodynamic flows of interest occur at much higher Reynolds
numbers where DNS is not practical. Another approach to this turbulent
problem is Reynolds-averaging, which leads to solving the Reynolds-
averaged Navier–Stokes (RANS) equations. In a RANS simulation we do
not resolve the instantaneous turbulent structures, but rather solve for
a time-averaged solution (think about the result from time-averaging
the flow behavior shown in Fig. 3.14). We are giving up some details of
the solution, and thus may lose some accuracy depending on which
engineering quantities are of interest, in exchange we enable high
Reynolds number solutions.

Before deriving the RANS equations (or rather an example subset of
them) we need to review the concept of an expected value, or average.
The expected value of some random variable 𝑋 will be denoted with
the following bracket notation, and is given as:

⟨𝑋⟩ = 𝐸[𝑋] =
∫ ∞

−∞
𝑥𝑝(𝑥)𝑑𝑥 (3.131)

where 𝑝(𝑥) is a probability density function for 𝑥 (e.g., a normal
distribution). If 𝑋 can only take on discrete quantities, then the
expected value would be given by the sum:

⟨𝑋⟩ =
∞∑
𝑖=1

𝑥𝑖𝑝𝑖 (3.132)

where 𝑝𝑖 is the probability associated with event 𝑥𝑖 .
In the Reynolds decomposition we split every flow variable into an

average component and a fluctuating component:

𝑢 = ⟨𝑢⟩ + 𝑢′ (3.133)

Some important properties of expectation are shown below. Expectation
is a linear operator and so commutes with other linear operators like
addition:

⟨𝑢 + 𝑣⟩ = ⟨𝑢⟩ + ⟨𝑣⟩ (3.134)

The average value of the fluctuations is zero by definition:

⟨𝑢′⟩ = 0 (3.135)

Differentiation is also a linear operator and so it commutes:〈
𝜕𝑢

𝜕𝑥

〉
=

𝜕⟨𝑢⟩
𝜕𝑥

(3.136)

https://youtu.be/4KeaAhVoPIw
https://youtu.be/4KeaAhVoPIw
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The expected value of a variable is a constant and so can be pulled out
of another expectation:

⟨⟨𝑢⟩𝑣⟩ = ⟨𝑢⟩⟨𝑣⟩ = 0 (3.137)

Before working out an example set of RANS equations, one quantity
we will need is the expectation of the product of two random variables.
We can work that out using the rules we’ve already established:

⟨𝑢𝑣⟩ = ⟨(⟨𝑢⟩ + 𝑢′)(⟨𝑣⟩ + 𝑣′)⟩ (3.138)
= ⟨⟨𝑢⟩⟨𝑣⟩⟩ + ⟨𝑢′⟨𝑣⟩⟩ + ⟨⟨𝑢⟩𝑣′⟩ + ⟨𝑢′𝑣′⟩ (3.139)
= ⟨𝑢⟩⟨𝑣⟩ + ⟨𝑢′𝑣′⟩ (3.140)

Note that even though the average of 𝑢′ and the average of 𝑣′ are both
zero, the average of their product is not necessarily zero.

We now examine the 2D incompressible Navier-Stokes equations,
with Reynolds-averaging. The standard mass and momentum equations
(𝑥-direction only for brevity) are shown below.

𝜕𝑢

𝜕𝑥
+ 𝜕𝑣

𝜕𝑦
= 0 (3.141)

𝜕𝑢

𝜕𝑡
+ 𝑢 𝜕𝑢

𝜕𝑥
+ 𝑣 𝜕𝑢

𝜕𝑦
= − 1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈

(
𝜕2𝑢

𝜕𝑥2 + 𝜕2𝑢

𝜕𝑦2

)
(3.142)

If we follow the same procedure shown above, introducing Reynolds-
averaging, and simplifying, we obtain the following equations:

𝜕⟨𝑢⟩
𝜕𝑥

+ 𝜕⟨𝑣⟩
𝜕𝑦

= 0 (3.143)

𝜕⟨𝑢⟩
𝜕𝑡

+ ⟨𝑢⟩ 𝜕⟨𝑢⟩
𝜕𝑥

+ ⟨𝑣⟩ 𝜕⟨𝑢⟩
𝜕𝑦

= − 1
𝜌

𝜕⟨𝑝⟩
𝜕𝑥

+ 𝜈

(
𝜕2⟨𝑢⟩
𝜕𝑥2 + 𝜕2⟨𝑢⟩

𝜕𝑦2

)
−

(
𝜕

𝜕𝑥
⟨𝑢′𝑢′⟩ + 𝜕

𝜕𝑦
⟨𝑢′𝑣′⟩

)
(3.144)

Notice, that the equations appear almost identical to the original
equations when we replace the instantaneous quantity (e.g., 𝑢) with
a time-averaged quantity (e.g., ⟨𝑢⟩). However, an extra term has been
introduced as highlighted in the equation above.

Multiplying the entire equation by 𝜌 (and considering all three
dimensions) we have extra terms of the form:

𝜌⟨𝑢′𝑖𝑢
′
𝑗⟩ (3.145)
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This quantity is called the Reynolds stress tensor (RST) because it has units
of stress and appears in the equation in a similar way as the standard
stress tensor. The problem, is that we have introduced additional
unknowns that we don’t have equations for, in other words, we have a
closure problem. This is where turbulence models come in, as a way to
model these additional terms.

Before discussing some turbulence models, we explore the turbulent
kinetic energy (TKE) equation, which will lend some insight into the
behavior of turbulence. This equation is formed by taking this new
mean momentum equation, subtracting it from the original momentum
equation, then multiplying by the velocity 𝑢𝑗 . The result is:

𝜕𝑘

𝜕𝑡
+ ⟨𝑢𝑖⟩

𝜕𝑘

𝜕𝑥𝑖︸           ︷︷           ︸
𝐷𝑘/𝐷𝑡

+ 𝜕

𝜕𝑥𝑖

(
1
2 ⟨𝑢

′
𝑖𝑢

′
𝑗𝑢

′
𝑗⟩ +

1
𝜌
⟨𝑢′𝑖𝑝

′⟩ − 2𝜈⟨𝑢′𝑗𝑠
′
𝑖 𝑗⟩

)
︸                                             ︷︷                                             ︸

∇·𝑇 transport

= −⟨𝑢′𝑖𝑢
′
𝑗⟩
𝜕⟨𝑢𝑗⟩
𝜕𝑥𝑖︸           ︷︷           ︸

P: production

− 2𝜈⟨𝑠′𝑖 𝑗𝑠
′
𝑖 𝑗⟩︸    ︷︷    ︸

𝜖 : dissapation

(3.146)

The quantity 𝑘 is the kinetic energy of turbulence:

𝑘 =
1
2 ⟨𝑢

′
𝑖𝑢

′
𝑖⟩ =

1
2

(
𝑢′2 + 𝑣′2 + 𝑤′2

)
(3.147)

It is proportional to the trace of the RST (2𝜌𝑘), and is one of the
most important parameters in turbulence. Often it is reported as a
nondimensional value called the turbulence intensity, which is the root-
mean-squared of the velocity fluctuations normalized by the magnitude
of the mean velocity.

𝐼 =

√
2
3 𝑘

∥⟨𝑢𝑖⟩∥
=

√
1
3
(
𝑢′2 + 𝑣′2 + 𝑤′2)√

⟨𝑢⟩2 + ⟨𝑣⟩2 + ⟨𝑤⟩2
(3.148)

The quantity 𝑠′
𝑖 𝑗

is the symmetric part of the stress tensor (using
fluctuating components):

𝑠′𝑖 𝑗 =
1
2

(
𝜕𝑢′

𝑖

𝜕𝑥 𝑗
+

𝜕𝑢′
𝑗

𝜕𝑥𝑖

)
(3.149)

Equation 3.146 has labels below various terms. The first term is
the total change in kinetic energy. Energy is produced at large scales
from the mean flow field (𝑢𝑗). This productive term is usually positive.
The transport term is a divergence moving energy from the large scales
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to smaller scales. The dissipation term is always negative and shows
that energy is dissipated by viscosity at the small scales where the
gradients in 𝑠′

𝑖 𝑗
are large. The dissipation term, 𝜀 is also used to define

the Kolmogorov scale, addressing how small of scales to we need to
resolve in a turbulent simulation. The overall equation shows how
turbulent kinetic energy flows through a fluid in an energy cascade. It
is generated at large scales, transported to smaller and smaller scales,
and dissipated at the smallest scales where viscosity dominates.

We now briefly introduce a few turbulence models. Recall that we
need a model for the RST:

𝜌⟨𝑢′𝑖𝑢
′
𝑗⟩ (3.150)

Boussinesq proposed a relationship with the mean flow, in what is
known as the Boussinesq hypothesis. The idea is to mimic the regular
stress tensor (Eq. 1.102), but replace the viscosity with a new term
called the eddy viscosity (𝜇𝑡). Note that the negative is added to cancel
the negative that appears in Eq. 3.144, and make it of the same form as
the stress tensor.

−𝜌⟨𝑢′𝑖𝑢
′
𝑗⟩ = 𝜇𝑡

(
𝜕⟨𝑢𝑖⟩
𝜕𝑥 𝑗

+
𝜕⟨𝑢𝑗⟩
𝜕𝑥𝑖

− 2
3

(
𝜕⟨𝑢𝑘⟩
𝜕𝑥𝑘

)
𝛿𝑖 𝑗

)
(3.151)

However, this cannot be a suitable model as it has zero trace, and recall
that the trace of the RST is 2𝜌𝑘. We then add a diagonal term to produce
the appropriate trace, where 𝐶 is a yet unknown constant:

−𝜌⟨𝑢′𝑖𝑢
′
𝑗⟩ = 𝜇𝑡

(
𝜕⟨𝑢𝑖⟩
𝜕𝑥 𝑗

+
𝜕⟨𝑢𝑗⟩
𝜕𝑥𝑖

− 2
3

(
𝜕⟨𝑢𝑘⟩
𝜕𝑥𝑘

)
𝛿𝑖 𝑗

)
+ 𝐶𝛿𝑖 𝑗 (3.152)

Taking the trace of both sides yields: −2𝜌𝑘 = 3𝐶 or 𝐶 = −2/3𝜌𝑘. Thus,
we have a model for the RST (rearranged in a more standard form):

−𝜌⟨𝑢′𝑖𝑢
′
𝑗⟩ = 𝜇𝑡

(
𝜕⟨𝑢𝑖⟩
𝜕𝑥 𝑗

+
𝜕⟨𝑢𝑗⟩
𝜕𝑥𝑖

− 2
3

(
𝜕⟨𝑢𝑘⟩
𝜕𝑥𝑘

)
𝛿𝑖 𝑗

)
− 2

3𝜌𝑘𝛿𝑖 𝑗 (3.153)

Note the similarities to the stress tensor in Eq. 1.102 (and Eq. 1.85 with
pressure included), repeated below:

𝜎𝑖 𝑗 = 𝜇

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
− 2

3

(
𝜕𝑢𝑘
𝜕𝑥𝑘

)
𝛿𝑖 𝑗

)
− 𝑝𝛿𝑖 𝑗 (3.154)

This a commonly used model, although its accuracy has been shown to
be poor in some scenarios. And, although we now have a model for
the RST, we still have an unknown, the eddy viscosity, and so need yet
another model.
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Various turbulence models are used to fill this gap. We won’t go into
detail, but rather provide a high-level overview of some of the main
ones. Perhaps the most commonly used turbulence model for CFD is
the 𝑘–𝜖 model. This model uses the TKE equation (Eq. 3.146), for 𝑘, the
turbulent kinetic energy and an empirical PDE for 𝜖 (the dissipation
term). The eddy viscosity is then related as:

𝜇𝑡 = 𝐶𝜌
𝑘2

𝜖
(3.155)

where 𝐶 is one of five adjustable constants used in the model.
The 𝑘–𝜔 model is similarly based on 2 PDEs, where 𝜔 = 𝜖/𝑘. This

model typically performs better in the near-wall region, in areas with
large streamwise pressure gradients (although 𝑘–𝜖 typically performs
better when separation occurs), or for compressible flows.

The Spalart-Allmaras turbulence model is a popular one-equation
model. It was designed specifically for aerospace applications with
wall-bounded flows. It has been shown to work particularly well for
boundary layers with adverse pressure gradients but still attached or
only mildly separated. It is not a good general model, and can produce
large errors for other scenarios like free shear flows, jet flows, etc.

The RST model does not use the Bousennisq hypothesis, but rather
has a separate model for each term in the RST. This is the most compu-
tationally intensive of these models.

One final comment on the RANS equations is on its suitability in two-
dimensions. If we refer back to the vorticty equation (Eq. 1.116) we note
that the vortex stretching term is only nonzero in 3D. Vortex stretching
is a critical mechanism in turbulence to transfer turbulent energy across
the various scales. In other words, turbulence is fundamentally a three-
dimensional phenomenon. While 2D RANS is often used, for example
in airfoil simulations, and can be a useful approach, there is good reason
to be even more skeptical of turbulence models in two-dimensional
flows.

3.8 Turbulent Boundary Layers

We now take a closer look at the behavior within a boundary layer.
Laminar boundary layers are straightforward. They are geometrically
similar and the profile is known from the Blasius solution. For turbulent
boundary layers, no matter how we nondimensionalize, we cannot
collapse the profiles onto a single curve. This is because the layers closer
to the surface act on very different length scales than layers further
away. Instead, we will think of a turbulent boundary layer as being
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6. Clauser, The Turbulent Boundary Layer,
1956.

Fig. 3.16 Relative contributions of
stresses within a turbulent bound-
ary layer.

Fig. 3.17 Fractional contribution of
stresses as a function of 𝑦+ in a tur-
bulent boundary layer.

composed of separate inner and outer layers. Figure 3.15 is a classic
figure demonstrating different behavior in separate regions.

Fig. 3.15 Nondimensional velocity
versus nondimensional distance from
wall showing different behavior in
different sublayers with a turbu-
lent boundary layer. Figure from
Clauser.6

Near the wall, viscosity is the most important parameter governing
the fluid behavior. In this region the Reynolds stresses are negligible.
At the wall the velocity fluctuations must be zero, so the Reynolds
stresses are zero at the wall. Figure 3.16 depicts the viscous stresses
and Reynolds stresses within a turbulent boundary layer, where we see
that viscous stresses dominate in the near-wall region.

The relevant parameters near the wall are thus the viscosity (𝜈),
density (𝜌), and the shear stress at the wall (𝜏𝑤). From those quantities
we can form a velocity and length scale to use in nondimensionalization.
The velocity scale is called the friction velocity:

𝑢𝜏 =

√
𝜏𝑤
𝜌

(3.156)

and the viscous length scale is:

𝛿𝑣 =
𝜈
𝑢𝜏

(3.157)

The nondimensional distance from the wall is then:

𝑦+ =
𝑦

𝛿𝑣
=
𝑢𝜏𝑦

𝜈
(3.158)

This quantity is called the y plus value. It is a nondimensional distance,
but from the above equation can also be thought of as a Reynolds
number using the relevant near-wall velocity scale. The fractional
contributions of the stresses are shown again in Fig. 3.17, this time as a
function of 𝑦+.

https://dx.doi.org/https://doi.org/10.1016/S0065-2156(08)70370-3
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In general, we expect the mean velocity gradient to be a function
of the distance from the wall, with both the viscous length scale,
and the boundary layer height as relevant length scales: However, as
we’ve argued, for the inner portion of the boundary layer the flow
behavior is independent of the outer portion of the boundary layer
(i.e., independent of 𝑉𝑒 and 𝛿). In fact, the behavior doesn’t depend on
whether it is a boundary layer or any other wall shear layer (e.g., an
internal flow). We then expect the mean velocity gradient to be given
by

𝑑⟨𝑈⟩
𝑑𝑦

=
𝑢𝜏

𝑦
𝑓

(
𝑦

𝛿𝑣

)
(3.159)

where 𝑓 is some yet unknown function with the constants 𝑢𝜏/𝑦 factored
out of the function so that the remaining function is nondimensional
(i.e., potentially universal). We define the nondimensional velocity
profile as:

𝑢+ =
𝑢

𝑢𝜏
(3.160)

Then the above expression reduces to the following nondimensional
relationship:

𝑑⟨𝑈⟩
𝑑𝑦

=
𝑢𝜏

𝑦
𝑓

(
𝑦

𝛿𝑣

)
𝑑𝑢+

𝑑𝑦+
=

1
𝑦+

𝑓 (𝑦+)
(3.161)

Or in other words, 𝑢+ can only depend on 𝑦+ in this inner layer
(𝑢+ = 𝑓 (𝑦+)). This prediction of universal behavior with the inner
layer of turbulent boundary layer is called the law of the wall. The inner
portion of a turbulent boundary layer comprises about 10–20% of the
full boundary layer height.

Within the inner layer, two sublayers are identified. The first is
the viscous sublayer also called the laminar inner sublayer. This layer
extends from the wall to approximately 𝑦+ = 5. In this region viscosity
dominates and so little mixing occurs, which is way it is referred to as a
laminar inner sublayer. Near the wall, the wall shear stress dominates
the behavior:

𝜏𝑤 = 𝜇
𝜕𝑢

𝜕𝑦
(3.162)

If we rearrange, and integrate, assuming the shear stress and viscosity
don’t change appreciably in this small region then:

𝑢 =
𝜏𝑤
𝜇
𝑦 =

𝑢2
𝜏𝜌

𝜇
𝑦 (3.163)
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Fig. 3.18 A buffer region exists be-
tween the inner sublayer and the log
law.

where we introduced the friction velocity in the last step. We now
nondimensionalize by dividing the velocity by the friction velocity:

𝑢+ =
𝑢

𝑢𝜏
=

𝜌𝑢𝜏𝑢

𝜇
= 𝑦+ (3.164)

The resulting prediction is linear behavior in the viscous sublayer.
Further away we expect an intermediate region where viscosity has

little effect, but where the external flow also has little effect. In this
region we expect the mean rate of strain to be constant. In other words,
we expect the nondimensional function that defines the mean velocity
gradient, 𝑓 (𝑦+) to be constant. This is typically written as follows:

𝑓 (𝑦+) = 1
𝜅

(3.165)

where 𝜅 is the von Karman constant. From Eq. 3.161 we then get:

𝑑𝑢+

𝑑𝑦+
=

1
𝑦+

1
𝜅

(3.166)

We integrate this expression to obtain:

𝑢+ =
1
𝜅

ln 𝑦+ + 𝐶 (3.167)

This is called the log law. Typical values for the two constants, obtaining
from experiments on a smooth wall, are: 𝜅 = 0.41 (when using a natural
log) and 𝐶 = 5.

Figure 3.18 shows both the inner layer and the log law on a semilog
scale. The inner layer applies up to about 𝑦+ = 5 and the low law starts
at about 𝑦+ = 30. In between we have a buffer region where neither law
applies. If we refer back to Fig. 3.15 we see that the log law eventually
breaks down. In this outer layer there is no universal behavior, and this
outer layer comprises about 80% of the boundary layer. it appears as
a small region only because it is a log scale on that axis (note how it
extends from about 𝑦+ = 1000–5000 for that case, which is 80% of the
total height.).

3.9 Large Eddy Simulation

Finally, we give a brief introduction to large eddy simulation (LES).
This technique has a fidelity between DNS and RANS. The concept is
motivated by the turbulent boundary layer behavior we just saw. The
method explicitly solves large-scale features (e.g., large eddies), but
uses a subgrid-scale model rather than trying to resolve all the small
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scales like DNS does. From the above discussion we expect that we
can do a reasonable job at modeling the small scales in a universal way.
The larger scales have non-universal behavior, contain the most energy,
and are strongly affected by geometry, so we explicitly solve for these.
This technique could also be thought of as a low-pass filter (i.e., we
ignore the high frequency, small scale, behavior).



Fig. 4.1 A basic wing is just a loft
between two airfoils.

4Finite Wing

A basic wing is just a loft between two or more airfoils (Fig. 4.1). We’ve
learned some techniques to compute forces and moments on an airfoil
and would now like to understand how that relates to computing forces
and moments on wings.

4.1 Geometry

Before diving into the physics, let us get a few terms out of the way as it
relates to geometry. The wingspan, or span, is a planar projection of the
lateral extent of the wing and is denoted as 𝑏 (Fig. 4.2). In other words,
a vertical winglet will increase the length of the wing, but it does not
increase span. This quantity is usually unambiguous, but for flexible
wings we may need to specify the loading conditions at which the span
is measured (e.g., span at 1g).

Fig. 4.2 Some nomenclature for a ba-
sic wing. Top view (top) and side
view (bottom).

The wing area, or just area, 𝑆, is another important quantity though
it can have many definitions (wetted area, projected area, gross area,
etc.). Typically, we are interested in a reference area, and we note this
explicitly as 𝑆ref. The reference area is a flat projected area that scales
with the wing, but is primarily used for normalization purposes. A
typical reference area uses a trapezoidal shape whether or not the actual

111
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Fig. 4.3 Trapezoidal reference area.

Fig. 4.4 Definition of twist.

Fig. 4.5 High aspect ratio wing (top),
and low aspect ratio wing (bottom).

wing is trapezoidal (see Fig. 4.3).
Sweep, Λ, is a shear angle that is usually measured at the quarter-

chord line, though sometimes at the leading edge. Sweep need not be
constant along the wing, and instead may be a distribution. Dihedral, 𝜙,
is a rotation angle that also need not be constant along the wing and
can be a distribution. Both can be seen in Fig. 4.2.

Chord, 𝑐, is rarely constant, though in simple cases it may follow a
linear distribution where one only needs to know the root chord 𝑐𝑟 and
the tip chord 𝑐𝑡 (Fig. 4.2). Another common wing design uses multiple
linear segments. In the general case, the chord is a curve. Twist (Fig. 4.4),
𝜃, is similarly often defined as piecewise linear, though can be a general
curved shape. Twist is usually measured about the quarter chord.

The nondimensional quantity, aspect ratio, is given by:

𝐴𝑅 =
𝑏2

𝑆ref
(4.1)

A high aspect ratio wing and a low aspect wing are contrasted in Fig. 4.5.
Another nondimensional quantity that is sometimes used is the taper
ratio:

𝜆 =
𝑐𝑡

𝑐𝑟
(4.2)

This quantity is less direct for curved shapes, but can still apply to the
trapezoidal reference area to give a qualitative understanding of the
shape. A taper ratio of 1 would correspond to a constant chord wing,
whereas a taper ratio of 0.1 would be higher tapered. Modern transport
aircraft typically have a taper ratio of around 0.2.

The mean geometric chord is simply:

𝑐 =
𝑆ref
𝑏

(4.3)

though this quantity isn’t used very much. More relevant is the mean
aerodynamic chord, which is a chord-weighted average chord. This
quantity is used in stability and control calculations, to normalize
pitching moment and to compute static margin, and is also typically
used as the length scale in Reynolds number calculations.

𝑐𝑚𝑎𝑐 =
2
𝑆

∫ 𝑏/2

0
𝑐2𝑑𝑦 (4.4)

where

𝑆 = 2
∫ 𝑏/2

0
𝑐𝑑𝑦 (4.5)

For a linearly tapered wing this integral evaluates to:

𝑐𝑚𝑎𝑐 =
2
3

(
𝑐𝑟 + 𝑐𝑡 −

𝑐𝑟 𝑐𝑡

𝑐𝑟 + 𝑐𝑡

)
(4.6)
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Fig. 4.6 Picture of aircraft flying
through colored smoke to visualize
the wake vortex. Picture from NASA,
public domain.

Fig. 4.7 Common explanation for tip
vortex that is helpful but incomplete.

Fig. 4.8 Box or annual wing. Image
from Steelpillow, Wikimedia, CC BY-
SA 3.0.

4.2 Downwash

The flow behavior over a wing has some fundamental differences as
compared to airfoils, also called infinite wings. A finite wing has a
three-dimensional flow field, with a crossflow component of velocity
perpendicular to the airfoils. In other words, a wing doesn’t solely act
like a series of airfoils stacked together.

A unique feature of lifting wings is that they produce a wake vortex
as seen in Fig. 4.6. A common explanation for the vortex is that a
lifting wing has higher pressure on the bottom surface as compared
to the top, and so fluid will circulate around the tips as shown in
Fig. 4.7. The resulting vortex is often called a tip vortex. This is a
helpful conceptualization, but is a somewhat misleading explanation.
It seems to suggest that a box wing (Fig. 4.8), which does not have
a “tip”, would not produce a vortex. It also leads to some erroneous
conclusions about the benefits of winglets.

As we will see more clearly later on, these wake vortices produce
downwash, or downward moving air, behind the wing. Downwash can
be viewed more fundamentally as a consequence of Newton’s third
law. If a body is producing lift, colloquially we might say that means
that the air is pushing the body up. Thus, by Newton’s third law, the
body must be pushing the air downward. Thus, any three-dimensional
lifting body will leave behind a wake of downward moving air. The
lift is not (and cannot) be generated uniformly along the wing. The lift
must go to zero somewhere on the wing (e.g., at a wing tip where a
pressure difference cannot be sustained between the upper and lower
surfaces), or on a closed wing, like the box wing, the force would have
to be reduced on one side to produce a net lift. In any case, variations in
the lift distribution are directly related to the vorticity, and the vorticity
will “roll-up” towards the center of vorticity forming a vortex, or in
some cases, multiple vortices. Another way to think of vortex formation
is that the downward moving air will be next to a region of still air,
and that velocity gradient (which is vorticity) will induce a rotation. A
more complete picture of the downwash and wake vortices can be seen
in Fig. 4.9.

A major consequence of this downwash, is that energy is left behind
in the wake. Or in other words, the wing produces drag. This type
of drag is called induced drag or sometimes vortex drag. To completely
eliminate induced drag, we would have to eliminate the downwash. In
other words, if flying into still air, any disturbances made by the aircraft
would need to be cancelled out, so the air behind the aircraft would also
be still. But, if there is no downwash left behind, then from the above

https://en.wikipedia.org/wiki/File:Airplane_vortex_edit.jpg
https://commons.wikimedia.org/wiki/File:Annular_box_wing.svg
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constitutes the vortex sheet that ends up streaming back from the wing trailing edge. 
The vortex sheet is a necessary part of the flowfield because the conservation laws 
of fluid mechanics dictate that the wing cannot produce the general flow pattern 
of Figure 3.1 without also producing the jump in spanwise velocity. On an intuitive 
level, the spanwise-‐velocity jump can be understood as being a result of the tendency 
of air to flow away from the high pressure under the wing toward the low pressure 
above the wing. The wing itself presents an obstacle to this motion and deflects it in 
the spanwise direction.

The development of the vortex sheet after it leaves the trailing edge is illustrated in 
Figure 3.2. Within the first couple of wingspans downstream, the sheet generally 
rolls up toward its outer edges to form two distinct vortex cores. (This is the general 
pattern for a wing in the "clean" condition, flaps-‐up. The flaps-‐down pattern is more 
complicated, with cores forming behind flap edges as well behind the wingtips.) 
Although the vortex cores are distinct, they are not as concentrated as they are 
sometimes portrayed, since a considerable amount of air that was initially non-‐
vortical is entrained between the “coils” of the sheet during rollup.

In Figure 3.2 the vortex sheet is illustrated as having essentially zero thickness, and 
the idealized theories model it that way mathematically. In the real world the vortex 
sheet is a physical shear layer of finite thickness that has its origin in the turbulent 
boundary layers on the upper and lower surfaces of the wing and, like the boundary 
layers, it is filled with small-‐scale turbulent motions.

The vortex cores are often referred 
to as "wingtip vortices,” though 
this is a bit of a misnomer. While it 
is true that the cores line up fairly 
closely behind the wingtips, the 
term “wingtip vortices” implies 
that the wingtips are the sole 
sources of the vortices. Actually, as 
we saw in Figure 3.2, the vorticity 
that feeds into the cores generally 
comes from the entire span of the 
trailing edge, not just from the 
wingtips.

-C,EAN?FIG?���

Figure 3.1. Velocities in a 
crossflow plane behind a 
lifting wing

Figure 3.2. The vortex wake 
behind a lifting wing

Fig. 4.9 Induced velocity from a lift-
ing body showing the region of down-
wash, and circulation from the wake
vortices.

Fig. 4.10 Aircraft flying in formation
can reduce their induced drag.

arguments there would be no lift. Thus, any lifting body must always
have induced drag. Although we cannot eliminate induced drag, there
are things we can do to reduce it as will be discussed later.

As a side note, we can see from Fig. 4.9 that although the wake
vortices induced downwash on the wing, to the sides of the wing they
induced upwash, or a region of rising air. This behavior provides the
motivation for formation flight. A second aircraft, or bird, positioned
behind and to the side of a lead aircraft (Fig. 4.10) can fly in a region of
rising air and thus reduce the energy required to maintain their lift.

The presence of downwash also changes our effective angle of
attack. As depicted in Fig. 4.11, without downwash the angle of
attack is the angle between the freestream velocity and the local chord
line. However, the presence of downwash alters the relative incoming

Fig. 4.11 Induced angle of attack.

velocity𝑉𝑟 . The effective angle of attack, 𝛼𝑒 𝑓 𝑓 , is reduced by the induced
angle of attack, 𝛼𝑖 :

𝛼𝑒 𝑓 𝑓 = 𝛼 − 𝛼𝑖 (4.7)

4.3 Vortex Filaments

We continue with the assumptions of incompressible and irrotational
flow, and thus are still governed by Laplace’s equation (potential flow).
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Fig. 4.12 A depiction of a line vortex.
In a plane perpendicular to the line
vortex the behavior is exactly that of
a point vortex.

*The connection to electromagnetic induc-
tion is the reason that vortex drag is re-
ferred to as induced drag.

But in this case the singularities we use are line vortices. A cross section
of a line vortex is just the point vortex we’ve seen before (Fig. 4.12). Or
in other words, the line vortex is like the point vortex but extruded out
of the plane. The circulation of the vortex is defined by the right hand
rule, the fingers curl around in the direction of induced velocity and
the thumb points along the line defining the direction of circulation.

An infinite vortex behaves just like the point vortex we studied in
Chapter 2. In other words, the velocity has a magnitude:

|𝑉 | = Γ

2𝜋𝑟 (4.8)

and is a tangential direction given by the right hand rule. We can now
have line vortices of any length, not just infinite. Another special case,
is a semi-infinite vortex where the vortex extends to infinity in one
direction only. If measuring the velocity in the plane where the vortex
filament ends, its magnitude is given by:

|𝑉 | = Γ

4𝜋𝑟 . (4.9)

Not surprisingly, the induced velocity has half the magnitude of an
infinite vortex.

For an arbitrary vortex line segment, referred to as a vortex filament,
we need to use the Biot-Savart Law. This law comes from magnetostatics
and describes the magnetic field induced by a constant electric current.
The same equation is used in aerodynamic applications to compute the
velocity induced by a filament of constant vorticity.*

We can derive Biot-Savart’s Law as follows. First, we assume an
incompressible flow:

∇ ·
⇀

𝑉 = 0 (4.10)

We now define
⇀

𝑉 = ∇ ×
⇀

𝐴 (4.11)

where
⇀

𝐴 is an arbitrary vector since, ∇ · ∇ ×
⇀

𝐴 = 0 for any
⇀

𝐴 (a vector
identity). The vorticity is given by the curl of the velocity:

⇀
𝜔 = ∇ ×

⇀

𝑉 = ∇ × (∇ ×
⇀

𝐴) = ∇(∇ ·
⇀

𝐴) − ∇2 ⇀

𝐴 (4.12)

Since,
⇀

𝐴 is arbitrary, we choose it to be divergence free (i.e., ∇ ·
⇀

𝐴 = 0).
The above equation then reduces to:

⇀
𝜔 = −∇2 ⇀

𝐴 (4.13)

We recognize this equation as Poisson’s equation, which has a known
solution:

⇀

𝐴(⇀𝑞) = 1
4𝜋

∫ ⇀
𝜔(⇀𝑠)
|⇀𝑞 − ⇀

𝑠 |
𝑑3𝑠 (4.14)
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†This is straightforward to show for Carte-
sian coordinates.
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Fig. 4.13 A vortex filament and a point
where the induced velocity is com-
puted at.

where 𝑞 is the field location, and 𝑠 is the location of the vorticity. In our
case, we need the curl of this quantity (see Eq. 4.11). We can show that†

∇ ×
⇀
𝜔(⇀𝑠)
|⇀𝑞 − ⇀

𝑠 |
=

⇀
𝜔 × (⇀𝑞 − ⇀

𝑠)
|⇀𝑞 − ⇀

𝑠 |3
(4.15)

Thus:
⇀

𝑉(⇀𝑞) = 1
4𝜋

∫ ⇀
𝜔 × (⇀𝑞 − ⇀

𝑠)
|⇀𝑞 − ⇀

𝑠 |3
𝑑3𝑠 (4.16)

Finally, we use a line vortex (infinitely thin) so the volume integral
reduces to a line integral, where the circulation is constant along the
filament 𝑑𝜔 = Γ𝑑

⇀

𝑙. We also define ⇀
𝑟 =

⇀
𝑞 − ⇀

𝑠 for simplicity. In other
words, ⇀

𝑟 is the distance from the integration point on the filament to
the evaluation point in the field where velocity is computed.

®𝑉 =
Γ

4𝜋

∫
𝑑®𝑙 × ®𝑟
|𝑟 |3 (4.17)

Note that this is a path integral, so the vortex filament can take any
arbitrary curved shape. The direction ®𝑙 points in the direction of positive
circulation.

Often, we will use vortex filaments that are straight line segments.
Let’s apply the Biot-Savart law to a straight line segment as shown in
Fig. 4.13. The segment 𝑑®𝑙 is a distance 𝑟 away from a point we want to
evaluate the induced velocity at. The distance ℎ is the perpendicular
distance from the vortex to the point. For the moment we won’t worry
about directions, for a simple filament it is obvious from the geometry,
but later we will be more rigorous about directions. The magnitude of
the cross product is:

𝑑®𝑙 × ®𝑟 = 𝑑𝑙 𝑟 sin𝜃 (4.18)

From the geometry we see that

sin𝜃 =
ℎ

𝑟
(4.19)

tan𝜃 =
ℎ

𝑙ℎ − 𝑙
(4.20)

where 𝑙ℎ is the point on the vortex filament that intersects with ℎ (a
constant value), and 𝑙 is a variable that moves along the filament. We
use the first expression to solve for 𝑟 and the second to solve for 𝑑𝑙:

𝑟 =
ℎ

sin𝜃
(4.21)

𝑑𝑙 =
ℎ

sin2 𝜃
𝑑𝜃 (4.22)
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Fig. 4.14 Control volume around a
vortex filament.

Making these substitutions into Eq. 4.17 yields:

| ®𝑉 | = Γ

4𝜋

∫ 𝜃2

𝜃1

sin𝜃
ℎ

𝑑𝜃 (4.23)

The distance ℎ is a constant so it can be pulled out of the integral leaving
us with a simple analytic expression for the magnitude of the induced
velocity from the vortex segment:

𝑉𝜃 =
Γ

4𝜋ℎ (cos𝜃1 − cos𝜃2) (4.24)

Notice, that this expression returns the expected velocity magnitude for
an infinite vortex (Eq. 4.8) and semi-infinite vortex (Eq. 4.9) when using
𝜃1 = 0, 𝜃2 = 𝜋 for the former case, and 𝜃1 = 0, 𝜃2 = 𝜋/2 for the latter.

To better understand how we can use vortex filaments for modeling
purposes, let’s consider a control volume that surrounds a vortex
filament as shown in Fig. 4.14. You can imagine this control volume as
a piece of paper that we wrap around the filament, without touching
the filament. Let’s now use Stoke’s theorem (Eq. 1.26) on this control
volume, with the velocity vector as the vector of interest:∫

𝐴

(
∇ ×

⇀

𝑉
)
· 𝑑

⇀

𝐴 =

∮
𝐶

⇀

𝑉 · 𝑑
⇀

ℓ (4.25)

The quantity ∇ ×
⇀

𝑉 we recognize as vorticity, and the left-hand-side as
the definition of circulation (Eq. 2.1). We will use a closed-path contour
starting from 𝐶1 (around the circle), across the end of the “folded paper”
(𝐶2), around the other circular end 𝐶3, and back along the seam 𝐶4 to
close the path. The area enclosed by this contour does not having any
vorticity crossing it. All of the vorticity is contained in the filament,
and the filament does not cross the area enclosed by this contour (again
imagine the area as that of a paper wrapped around the filament). Thus,
the left hand side of the above integral is zero, there is no vorticity flux
through the area. The contour integral around the full path must then
also be zero. We break up that integral into four parts.∫

𝐶1

⇀

𝑉 · 𝑑
⇀

ℓ +
∫
𝐶2

⇀

𝑉 · 𝑑
⇀

ℓ +
∫
𝐶3

⇀

𝑉 · 𝑑
⇀

ℓ +
∫
𝐶4

⇀

𝑉 · 𝑑
⇀

ℓ = 0 . (4.26)

The integral along 𝐶2 and 𝐶4 are along the same segment, just in
opposite directions, so they will cancel out. The integrals around the
ends, we can see as the definition of circulation and each will contain the
circulation of the filament (see Eq. 2.1 and Fig. 2.1). The two contours
traverse in opposite directions, and so will have opposite signs.

Γ1 − Γ3 = 0 (4.27)
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From the above expression, we see that Γ1 = Γ3. Or in other words,
the circulation along a vortex filament must be constant. The corollary is a
filament cannot just suddenly end in the fluid, otherwise, the contour
integral on one end would be zero and the above equation would not
be satisfied. We can still use arbitrary vortex filaments, but we have
to connect them to other filaments. The segments must form a closed
path, or extend to infinity. Collectively these conditions are known as
Helmholtz’s vortex theorems.

With those requirements in mind, a simple model of a wing might
look like that shown in Fig. 4.15. The bound vortex stays fixed in
the wing, and from a side view, looks the same as the circulation
generated from an airfoil. The new addition for a wing is the trailing
vortices. The trailing vortices look like a reasonable first model for a
wake vortex (Fig. 4.6). Because, the vortices cannot end in the fluid, they
are closed with a starting vortex (or more typically we just extend the
trailing vortices to infinity). The starting vortex is physically observable
when impulsively accelerating a wing. Notice that the strength and
direction of the vortices must stay constant around the loop. Based
on the drawn direction of circulation, we see that the vortices all
generate downwash on the inside of the rectangle formed by the vortex
filament path. Thus, this model is a first step toward modeling the
downwash, that is a consequence of any three-dimensional lifting body,
as discussed at the beginning of this chapter. We typically omit the

Fig. 4.15 A closed path vortex fila-
ment from a wing.

starting vortex, extending the trailing vortices to infinity, and call the
resulting configuration a horseshoe vortex because of the horseshoe-like
shape. From Eq. 4.24 we can compute the predicted downwash 𝑤 at
any location along the wing, based on the trailing vortices. Note that
the bound vortex does not contribute any downwash at the quarter-
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chord (with the bound vortex placed at the quarter-chord), since the
distance from the center of the singularity is zero. The contributions
from the two trailing vortices are shown in Fig. 4.16. While we do
get downwash across the wing, the model is over simplified. The
circulation distribution is modeled as constant along the wing with
only one horseshoe vortex, and we know that the circulation must go
to zero at the tips. Furthermore, this model predicts infinite downwash
at the tip, an unphysical result (in fact, downwash at the tip generally
isn’t even large for a real wing). So a single horseshoe vortex is clearly
insufficient to model a lifting wing, but it provides a starting point for
improved models, two of which we will study in this chapter.

Fig. 4.16 The downwash induced at
the wing from a single horseshoe vor-
tex model. Left is a top view showing
the horseshoe vortex, and the right
figure is a back view showing the
resultant downwash distribution.

4.4 Lifting Line Theory

If one horseshoe vortex is too crude to represent a wing, perhaps we
can obtain a reasonable model by using multiple horseshoe vortices. A
depiction of three horseshoe vortices, and the resulting lift distribution
is shown in Fig. 4.17. The lift distribution is blocky, but is a better

Fig. 4.17 A blocky but more realistic
representation of the lift distribution
as compared to a single horsesehoe
vortex.

representation than the constant lift distribution produced by one
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Fig. 4.18 Integration of trailing vor-
tices along the lifting line.

horseshoe. Notice that each additional horseshoe vortex adds an
incremental circulation (ΔΓ) to the overall circulation. In lifting line
theory we extend this idea with an infinite number of horseshoe
vortices, each contributing an infinitesimal change 𝑑Γ. Because we
have an infinite number of vortices, it is more helpful to think of a
continuously varying vorticity distribution, 𝛾, where the vorticity is the
derivative of the circulation along the lifting line (the line along which
vorticity is distributed).

𝛾 =
𝑑Γ

𝑑𝑦
(4.28)

We no longer have horseshoe vortices, but rather a vortex sheet of
continuous varying vorticity. That continuously varying vorticity
allows us to produce any arbitrary, smooth lift distribution.

We would like to compute the velocity induced by a vortex sheet
along the lifting line. Consider Fig. 4.18, where the vorticity (𝛾) varies
along the lifting line (as a function of a dummy variable 𝑦′), and we
wish to compute the infinitesimal vertical velocity (𝑑𝑤) induced at some
other location 𝑦. The lift distribution is increased by some 𝑑Γ at this
position, and so the corresponding strength of the trailing vortex at
this particular position is: 𝑑Γ = 𝑑Γ

𝑑𝑦
𝑑𝑦 = 𝛾𝑑𝑦. Each trailing vortex is a

semi-infinite vortex, inducing a velocity at position 𝑦 of (see Eq. 4.9):

𝑑𝑤(𝑦) = − 𝛾(𝑦′)𝑑𝑦′
4𝜋(𝑦 − 𝑦′) (4.29)

The negative sign is needed because the circulation is decreasing with
𝑦 on this side of the wing (𝛾 = 𝑑Γ/𝑑𝑦 < 0), and with a positive (𝑦 − 𝑦′),
the resulting induced velocity is up (positive). Integrating across the
lifting line gives:

𝑤(𝑦) = − 1
4𝜋

∫ 𝑏/2

−𝑏/2

𝛾(𝑦′)𝑑𝑦′
(𝑦 − 𝑦′) (4.30)

From Fig. 4.11 we see that the induced angle of attack is given by
(with the negative sign needed because we defined the induced velocity
as positive up in the above equation):

𝛼𝑖 = tan−1
(
−𝑤
𝑉∞

)
= tan−1

(
1

4𝜋𝑉∞

∫ 𝑏/2

−𝑏/2

𝛾(𝑦′)𝑑𝑦′
(𝑦 − 𝑦′)

)
(4.31)

We can relate the lift coefficient to circulation through the Kutta-
Joukowsi formula (Eq. 2.36), and the definition of the lift coefficient
(eqn:lift2d):

𝐿′ = 𝜌𝑉∞Γ = 𝑐𝑙
1
2𝜌𝑉

2
∞𝑐 ⇒ 𝑐𝑙 =

2Γ
𝑉∞𝑐

(4.32)
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Fig. 4.19 An elliptic lift distribution.

Using the effective angle of attack from Eq. 4.7 in place of the angle
of attack in Eq. 1.20, we relate the induced angle of attack to the lift
coefficient across the linear portion:

𝑐𝑙 = 𝑚(𝛼 − 𝛼0 − 𝛼𝑖) (4.33)

Putting those pieces together gives:

2Γ(𝑦)
𝑉(𝑦)𝑐(𝑦) = 𝑚(𝑦)

(
𝛼(𝑦) − 𝛼0(𝑦) − tan−1

(
1

4𝜋𝑉(𝑦)

∫ 𝑏/2

−𝑏/2

𝛾(𝑦′)𝑑𝑦′
(𝑦 − 𝑦′)

))
(4.34)

This equation is known as the fundamental equation of lifting line theory.
Given a known inflow speed, chord, and airfoil distribution, this
equation, in principle, allows us to solve for the resulting lift distribution.
The unknowns Γ and 𝛾 are not independent; recall that 𝛾 = 𝑑Γ/𝑑𝑦.

4.4.1 Elliptic Lift Distribution

Before looking at solving for a general situation, we start with a given
solution: an elliptic lift distribution (Fig. 4.19). As we will see, an elliptic
lift distribution is an efficient design from an induced drag point of
view. An elliptic lift distribution is what it sounds like, the distribution
of lift follows an elliptic shape:

Γ(𝑦) = Γ0

√
1 −

(
𝑦

𝑏/2

)2
(4.35)

where Γ0 is the max circulation at the middle of the wing. The above
is actually the circulation distribution, but the lift distribution is just a
scalar multiple of this from the Kutta-Joukowski theorem:

𝐿′(𝑦) = 𝜌∞𝑉∞Γ0

√
1 −

(
𝑦

𝑏/2

)2
(4.36)

As one would expect, an elliptic lift distribution integrates nicely:

𝐿 =

∫ 𝑏/2

𝑏/2
𝐿′𝑑𝑦 = 𝜌∞𝑉∞Γ0𝑏

𝜋
4 (4.37)

We equate this quantity to the lift from the definition of the lift coeffi-
cient:

𝐿 = 𝐶𝐿
1
2𝜌𝑉

2
∞𝑆 (4.38)
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Fig. 4.20 Relationship between in-
duced angle of attack and the lift and
induced drag vectors.

This allows us to relate the quantity Γ0 to known properties of the
wing:

Γ0 =
2𝑉∞𝑆𝐶𝐿
𝑏𝜋

(4.39)

We will need the vorticity distribution to use in the fundamental
lifting line equation:

𝛾(𝑦′) = 𝑑Γ

𝑑𝑦
(𝑦′) = −Γ0

4𝑦
𝑏2

1√
1 − (2𝑦/𝑏)2

(4.40)

We will now use the same type of cosine transformation we used in
thin airfoil theory (Eq. 2.92), except we want the integrate from -1 to 1
(wingtip to wingtip), rather than from 0 to 1 (leading edge to trailing
edge of airfoil):

𝑦 =
𝑏

2 cos𝜃 where 𝜃 = [𝜋, 0] (4.41)

Plugging the above vorticity distribution into Eq. 4.30, and using
the cosine transformation gives the following equation for the induced
velocity:

𝑤(𝜃) = − Γ0
2𝜋𝑏

∫ 0

𝜋

cos𝜃′

cos𝜃 − cos𝜃′ 𝑑𝜃
′ (4.42)

This is the same integral we saw in deriving thin airfoil theory (Eq. 2.96).
Our integral corresponds directly to the 𝑛 = 1 case (Eq. 2.98). Thus, the
induced velocity distribution evaluates to:

𝑤(𝜃) = −Γ0
2𝑏 (4.43)

From this equation we see that the downwash (down because of the
negative sign), is constant along the wing. In other words, an elliptic lift
distribution produces constant downwash. This will be an important point
later, but for now we note that this is a very different distribution than
predicted by the overly simplified single horseshoe vortex (Fig. 4.16).

We already related our peak circulation, Γ0, to known wing quanti-
ties (Eq. 4.39), so we plug those into this expression for downwash:

𝑤 = −Γ0
2𝑏 = −𝑉∞𝐶𝐿

𝐴𝑅𝜋
(4.44)

We then use the definition of the induced angle of attack to obtain:

tan 𝛼𝑖 =
−𝑤
𝑉∞

=
𝐶𝐿

𝜋𝐴𝑅
(4.45)

With the induced angle of attack defined in terms of known aircraft
quantities (for an elliptic lift distribution), we can relate this angle to
the lift and induced drag as seen in Fig. 4.20. We see that
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Fig. 4.21 The Supermarine Spitfire is
a well-known example of an aircraft
with an elliptic wing. Image from
Adrian Pingstone, Wikimedia, public
domain.

tan 𝛼𝑖 =
𝐷𝑖

𝐿
(4.46)

or rearranging, and normalizing:

𝐶𝐷𝑖 = 𝐶𝐿 tan 𝛼𝑖 (4.47)

If we substitute the expression for an elliptic lift distribution (Eq. 4.45)
we now have an equation for the induced drag produced by an elliptic
lift distribution:

𝐶𝐷𝑖 =
𝐶2
𝐿

𝜋𝐴𝑅
(4.48)

where 𝐴𝑅 is defined using the reference area. To obtain an expression
for induced drag, we multiply both sides by the dynamic pressure:

𝐶𝐷𝑖
1
2𝜌𝑉

2
∞𝑆 =

𝐶2
𝐿

𝜋𝐴𝑅
1
2𝜌𝑉

2
∞𝑆 (4.49)

Then expand the lift coefficient in terms of lift:

𝐷𝑖 =
𝐿𝐶𝐿

𝜋𝐴𝑅
=

𝐿2

𝑞∞𝑆𝜋𝐴𝑅
(4.50)

The final result is:

𝐷𝑖 =
𝐿2

𝑞∞𝜋𝑏2 (4.51)

While we assumed we have an elliptic lift distribution, we have not
discussed how to produce such a distribution. To better understand
this we use the fundamental lifting line equation (Eq. 4.34). For an
elliptic lift distribution we’ve shown that the downwash, and thus the
induced angle of attack is constant along the wing. Thus, the tan−1

term is a constant. The circulation term Γ(𝑦) is elliptic, and so if we
move everything else to the right-hand side, those terms must also form
an elliptic distribution. Because the induced angle of attack is constant,
and if we assume that the inflow velocity, 𝑉(𝑦), is constant along the
wing (as would be typical) then the remaining terms:

𝑚(𝑦)𝑐(𝑦)(𝛼(𝑦) − 𝛼0(𝑦)) (4.52)

must form an elliptic distribution. To simplify, let’s assume that we use
the same airfoil throughout the wing (though not necessarily the same
size airfoil). In that case, the lift curve slope (𝑚) and the zero-lift angle
of attack (𝛼0) would be constant along the wing. We would then need
the produce 𝑐(𝑦)𝛼(𝑦) to be elliptic. One way to achieve this is to use a
wing with no twist, then 𝛼(𝑦) is constant, and so the chord distribution

https://commons.wikimedia.org/wiki/File:Spitfire.planform.arp.jpg
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Fig. 4.22 An arbitrary lift distribution
from which we add or subtract dif-
ferential amounts of lift at arbitray
locations.

Fig. 4.23 A wing with a winglet.

of the wing must be elliptic. This approach was perhaps most famously
employed with the Spitfire (Fig. 4.21), a British WWII-era aircraft. If all
we need is 𝑐(𝑦)𝛼(𝑦) to be elliptic, that means we can produce an elliptic
lift distribution with any arbitrary chord distribution, by appropriately
twisting the wing (and thus changing 𝛼(𝑦)). Manufacturing an elliptic
shape is more expensive, and unnecessary, so such an approach is
rarely used anymore. Of course, not just any chord distribution is
desirable. There are structural implications, and small chords will lead
to premature stall.

4.4.2 Method of Restricted Variations

One simple way to show that the elliptic lift distribution is the minimum
induced drag solution (for a fixed span and lift), is the method of restricted
variations. In this method we consider some arbitrary lift distribution
and we add differential amounts of lift at arbitrary locations (Fig. 4.22),
subject to some constraints. For example, if we want to minimize
induced drag, then we need the differential of induced drag to be zero.
From the Kutta-Joukowski theorem the indued drag is given by:

𝐷𝑖 = 𝜌𝑤Γ (4.53)

where 𝑤 is the downwash. Thus, if we add some small amount of
circulation at two arbitrary locations, to maintain a minimum in induced
drag we require (for an incompressible flow):

𝛿𝐷𝑖 = 0 ⇒ 𝑤1𝛿Γ1 + 𝑤2𝛿Γ2 = 0 (4.54)

Furthermore, we want to add these arbitrary circulations such that the
lift is constant:

𝛿𝐿 = 0 ⇒ 𝛿Γ1 + 𝛿Γ2 = 0 (4.55)

If we combine these two equations we see that 𝑤1 = 𝑤2, but since 1 and
2 are arbitrary locations along the wing, this means that for minimum
induced drag, with a fixed lift, the downwash must be constant along
the wing. We already saw that an elliptic lift distribution produces
constant downwash. Thus, an elliptic lift distribution is the minimum
induced drag solution for a fixed lift and span.

This simple method can be used to produce various formulas. One
example, is adding a root bending moment constraint as was shown by
R. T. Jones. Such a constraint is interesting, but not usually useful as
a structural constraint as it ignores thickness, and can be misleading
for nonplanar wings. One minor variation is to consider minimum
induced drag for a nonplanar wing. Figure 4.23 for example shows
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Fig. 4.24 Back view of wing with
winglet.

Fig. 4.25 A common, though incor-
rect explanation for the benefits of
winglets.

Fig. 4.26 The induced velocity of the
wing on winglet cancels the induced
velocity of the winglet on itself.

a wing with a winglet. More generally, we allow to dihedral angle
to vary continuously along the wing. In this case, the induced drag
equation looks the same except we use the normalwash since “down”
is not particularly relevant for a nonplanar wing. The normalwash is
the induced velocity normal to the section of the wing. For minimum
induced drag we need

𝛿𝐷𝑖 = 0 ⇒ 𝑉𝑛1𝛿Γ1 +𝑉𝑛2𝛿Γ2 = 0 (4.56)

The lift equation looks similar, but we need to take only the vertical
component of the circulation, which contributes to lift.

𝛿𝐿 = 0 ⇒ 𝛿Γ1 cos 𝜙1 + 𝛿Γ2 cos 𝜙2 = 0 (4.57)

Combing these two equations leads to the insight that the normalwash
(𝑉𝑛), in the farfield, should be proportional to the local dihedral angle:

𝑉𝑛 = 𝑤0 cos 𝜙 (4.58)

where 𝑤0 is some constant.
This formula dispels another common misconception associated

with winglets. A back view of a wing with a vertical winglet is depicted
in Fig. 4.24. We see that the wake vortex, which induces a downwash
on the wing, induces a sidewash on the winglet. We then consider a
top view of the winglet, showing the airfoil in Fig. 4.25, with the wing-
induced sidewash coming from right to left. Vectorially combining this
velocity with the freestream results in the relative velocity𝑉𝑟 . From the
Kutta-Jouwkoski theorem this inflow would produce a force at a right
angle as depicted by the arrow emanating from the airfoil. Thus, we
see that the airfoil produces a component of thrust, and is sometimes
given as an explanation for why winglets are beneficial.

However, from our above derivation, we can see that this would not
be an optimal winglet. The dihedral angle is 90◦ and so an optimally
loaded winglet should be produce a net zero normalwash. Such a
scenario is depicted in Fig. 4.26 where the winglet is loaded such that
the normalwash of the winglet on itself, exactly cancels the normalwash
induced by the wing on the winglet. Thus, no net thrust is produced.
While this may seem to have eliminated any benefit, we have not
considered the induced velocity of the winglet on the wing. In this
scenario, the vortices generated by the winglet would produce an
upwash on the main wing (near the tip), thus reducing the induced
drag of the wing.
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Fig. 4.28 Bound vorticity distributed
along the wing.

Fig. 4.29 An arbitrary pair of vortices
and their mutually induced veloci-
ties.

4.4.3 Contribution of the Bound Vortex

In lifting line theory we considered only trailing vortices in our integral.
In doing so we obtained the result that the downwash, normalized
by the freestream, at the wing should be − 𝐶𝐿

𝜋𝐴𝑅 . More generally, the
induced velocity from these trailing vortices is depicted both in front
of and downstream of the wing with the red curve shown in Fig. 4.27.
As we go far upstream the trailing vortices have no effect, and far
downstream they behave like an infinite vortex and so the induced
velocity is twice as large. We now consider the bound vortex. The
bound vortex may not induce a velocity on itself, but it certainly affects
the wing. Far upstream and downstream the bound vortex will not
induce any velocity. As we approach the bound vortex, for a straight
wing, it will act like a point vortex, inducing very high velocities as
we approach the lifting line as depicted with the blue line. The total
induced velocity, trailing plus bound, is depicted in green. This is
what the actual induced velocity distribution looks like, but this is
problematic because the downwash at the wing is clearly not − 𝐶𝐿

𝜋𝐴𝑅 ,
which was the basis of our induced drag derivation. That result seems
to only be applicable if we ignore the bound vortex, which does not
seem justifiable.

Fig. 4.27 Induced velocity from trail-
ing and bound vortices (both sepa-
rately and combined).

It turns out that we can ignore the influence of the bound vortex,
but only when computing drag. In the real wing, the vorticity is not
all concentrated along a line, but rather the vorticity is distributed. We
could depicted that with a large number of discrete vortices as seen in
Fig. 4.28. Let’s now consider an arbitrary pair of these vortices, one
with circulation Γ1 and the other with circulation Γ2 (Fig. 4.29). The
first vortex induced a velocity on the second vortex, in the downward
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direction with magnitude

|𝑤2 | =
Γ1

2𝜋𝑅 (4.59)

where 𝑅 is the distance between them. Conversely, the second induces
an upward velocity on the first:

|𝑤1 | =
Γ2

2𝜋𝑅 (4.60)

From the Kutta-Joukowski theorem the induced drag experienced on
the first vortex, from the induced velocity is:

𝐷𝑖1 = −𝜌𝑤1Γ1 = −𝜌Γ1Γ2
2𝜋𝑅 (4.61)

where the negative sign came from the right hand rule. Conversely, the
induced drag experienced by the second vortex is:

𝐷𝑖2 = 𝜌𝑤2Γ2 = 𝜌
Γ1Γ2
2𝜋𝑅 (4.62)

The total induced drag of the pair of vortices (𝐷𝑖1 + 𝐷𝑖2) is 0. Because
we chose any two arbitrary vortices, this is a general result: the total
induced drag of the bound vortices always cancels. This is true for any
orientation and in three-dimensions, as long as they are bound vortices
(i.e., perpindicular to the freestream velocity). This result demonstrates
why the lifting line concept works and why the induced drag formulas
are correct, even though we have ignored the influence of the bound
vortices.

4.4.4 Lift Curve Slope Reduction

Before considering a more general case, it is also worth noting that the
presence of downwash affects the lift curve slope. If we had an infinite
wing, with a constant airfoil, the lift coefficient would be given by:

𝐶𝐿 = 𝑚(𝑎 − 𝛼0) (4.63)

where 𝑚 is the lift curve slope, which we saw is theoretically equal to
2𝜋 for a thin airfoil (Eq. 2.148). For a finite wing we need to include the
induced angle of attack:

𝐶𝐿 = 𝑚(𝑎 − 𝛼0 − 𝛼𝑖) (4.64)

In the case, of an elliptic lift distribution (Eq. 4.45) this expression
becomes:

𝐶𝐿 = 𝑚

(
𝑎 − 𝛼0 − tan−1

(
𝐶𝐿

𝜋𝐴𝑅

))
(4.65)
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If we assume that the induced angle of attack is small then:

𝐶𝐿 ≈ 𝑚

(
𝑎 − 𝛼0 −

𝐶𝐿

𝜋𝐴𝑅

)
(4.66)

We now take derivatives of both sides with respect to 𝛼:

𝑑𝐶𝐿

𝑑𝛼
= 𝑚

(
1 − 𝑑𝐶𝐿

𝑑𝛼
1

𝜋𝐴𝑅

)
(4.67)

Solving for the lift curve slope gives:

𝐶𝐿,𝛼 =
𝑚

1 + 𝑚
𝜋𝐴𝑅

(4.68)

This equation shows that if the wing had an infinite aspect ratio, then
our lift curve slope would be the same as that of the airfoil, as expected.
However, the presence of downwash reduces the lift curve slope of
the wing. As an example, for an aspect ratio of 8, the predicted lift
curve slope from the above formula would be 1.6𝜋 instead of 2𝜋. Note
that the above formula is just an approximation that assumes constant
airfoils, an elliptic lift distribution, and a small induced angle of attack.
Still it is a reasonable first estimate and more importantly illustrates the
general behavior of a reduced lift curve slope for a finite wing.

4.4.5 General Lift Distribution

To motivate a general case, let’s consider again an elliptic lift distribution:

Γ(𝑦) = Γ0

√
1 −

(
𝑦

𝑏/2

)2
(4.69)

but use the coordinate transformation from Eq. 4.41:

Γ(𝜃) = Γ0
√

1 − cos2 𝜃 = Γ0 sin𝜃 (4.70)

Like we did in thin airfoil theory for a cambered airfoil (Section 2.5.7),
we will represent the general case with a Fourier sine series:

Γ(𝜃) = 2𝑏𝑉∞

𝑁∑
𝑛=1

𝐴𝑛 sin(𝑛𝜃) (4.71)

The choice of constant 2𝑏𝑉∞ is arbitrary, though we would like to choose
it so that the coefficients 𝐴𝑛 are nondimensional.

We plug the above into the fundamental lifting line equation
(Eq. 4.34).

𝛼(𝜃) − 𝛼0(𝜃) =
2𝑏

𝜋𝑐(𝜃)

𝑁∑
𝑛=1

𝐴𝑛 sin(𝑛𝜃) +
𝑁∑
𝑛=1

𝑛𝐴𝑛
sin(𝑛𝜃)

sin𝜃
(4.72)



4 Finite Wing 129

In the above we made use of a small angle approximation

𝛼𝑖 = tan−1
(
−𝑤
𝑉∞

)
≈ −𝑤
𝑉∞

(4.73)

There are 𝑁 unknowns, where 𝑁 depends on how many terms we
wish to include in the Fourier series, so we need 𝑁 equations. This
is done through a collocation method. This means that we choose 𝑁
points along the span and apply the above equation at each of the 𝑁
points, resulting in 𝑁 equations and 𝑁 unknowns that we can solve for
simultaneously as a linear system of equations. For symmetric loadings,
which is common, all the even coefficients of the series (𝐴2 , 𝐴4 , . . .) are
zero so we need not include them as unknowns. Asymmetric loadings
are used as well, for example, to simulate a wing with aileron deflection.

Because of the orthogonality of the Fourier terms the integral for
lift simplifies to:

𝐶𝐿 = 𝐴1𝜋𝐴𝑅 (4.74)

The induced drag equation becomes:

𝐶𝐷𝑖 =
𝐶2
𝐿

𝜋𝐴𝑅

𝑁∑
𝑛=1

𝑛

(
𝐴𝑛

𝐴1

)2
(4.75)

Even though the lift coefficient only depends on one coefficient, unlike
thin airfoil theory, you can’t compute 𝐴1 independently. As we saw
above with the collocation method, all of the coefficients must be
computed simultaneously. Thus, accuracy improves as you include
more coefficients in the Fourier series even if we only were interested
in lift.

For convenience, the coefficient terms in induced drag are wrapped
up into a single constant called the inviscid span efficiency:

𝑒𝑖𝑛𝑣 =

(
𝑁∑
𝑛=1

𝑛

(
𝐴𝑛

𝐴1

)2
)−1

(4.76)

Then, the induced drag coefficient formula simplifies to:

𝐶𝐷𝑖 =
𝐶2
𝐿

𝜋𝐴𝑅𝑒𝑖𝑛𝑣
(4.77)

or in dimensional terms:

𝐷𝑖 =
𝐿2

𝑞𝜋𝑏2𝑒𝑖𝑛𝑣
(4.78)
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Fig. 4.30 An example paneling on a
lifting surface. A horseshoe vortex
is depicted on one panel, and each
panel will have its own horseshoe
vortex. The x denotes the control
point for the given panel.

If we compare Eq. 4.77 with Eq. 4.48 we see that for an elliptic lift
distribution 𝑒𝑖𝑛𝑣 = 1. Thus, the inviscid span efficiency could be
considered a measure of how close the lift distribution is to elliptic. All
planar distributions will have 𝑒𝑖𝑛𝑣 ≤ 1, so as we saw previously, the
elliptic lift distribution is the minimum induced drag solution assuming
a planar lift distribution and a fixed span. A nonplanar lift distribution
(e.g., adding winglets) can increase the inviscid span efficiency above 1.

Various extensions to lifting line theory have been developed over
the years, often referred to as a nonlinear lifting line theory. We do not
describe those in more detail here, though they can be quite useful, but
rather describe an alternative approach that is perhaps more commonly
used in the next section.

4.5 Vortex Lattice Method

The panel methods of Chapter 2 can be extended into three dimensions
(with some additional considerations), but we will instead consider
a simpler, and widely-used method, for early stage design of three
dimensional lifting surfaces (e.g., wings, tails). The vortex lattice
method (VLM) is essentially an extension of thin airfoil theory into three
dimensions, or it could also be thought of as a simplified implementation
of a 3D panel code.

In this method, a lifting surface is divided into panels, and each
panel has a horseshoe vortex as shown in Fig. 4.30. The trailing vortices
extends into the +𝑥 direction of the body axes.

A VLM uses the thin airfoil assumption so that lifting surfaces are
flat (not curved), and changes in twist are handled in the boundary
condition and not the geometry. A wing may be represented with
multiple flat surfaces, for example a wing and winglets. Curved surfaces
require a more general 3D panel method.

A VLM can have both spanwise and chordwise panels. If only
spanwise panels are used, it is called a Weissinger formulation. This
simplification is appropriate for high aspect ratio wings where resolving
the chordwise pressure distribution is less significant in obtaining an
accurate lift distribution.

Because the vortex filaments automatically satisfy the governing
equations, the only remaining conditions to satisfy are flow tangency
and the Kutta condition. The flow tangency condition (or no-flow-
through condition) will be applied at select control points. Because
each horseshoe vortex has a constant (as yet unknown) strength, we
can only have one control point per panel, thus maintaining an equal



4 Finite Wing 131

number of unknowns and equations. The control point was denoted as
an x in Fig. 4.30.

A vortex lattice method uses what is called a lumped vortex method,
this means that distributed vorticity along each panel is all lumped
into one vortex as shown in Fig. 2.23. Even with multiple chordwise
panels, this approach is still used, just with the vorticity lumped into
separate vortices for each chordwise panel. Back in Section 2.5.10 we
already considered this exact scenario and determined from thin airfoil
theory that the vorticity should be placed at the quarter chord, and
the control point at the three-quarters-chord. The placing of the vortex
at the quarter chord could also be motivated by the fact that it is the
location of the aerodynamic center according to thin airfoil theory as
seen previously in Section 2.5.9. Also note that in using the lift result
from thin airfoil theory we have implicitly imposed the Kutta condition
already. Thus, all that remains is satisfying flow tangency at the control
points.

4.5.1 Aerodynamic Influence Coefficients (AIC)

As noted, the control point on each panel is at the section’s three-
quarters-chord point. There is one control point for each panel. The
boundary condition is flow tangency:

𝑉𝑛 |𝑐𝑝 = 0 (4.79)

where the 𝑐𝑝 subscript denotes a control point, and the boundary
condition is applied at each control point separately. The velocity
can be broken up into four terms: the freestream velocity, velocity
from rigid-body rotation, self-induced velocity from the vortices, and
other external velocity sources such as upstream wakes or gusts. The
freestream velocity is defined as the negative of the translational motion
of the vehicle (thus it is constant for the entire aircraft, unlike gusts
which may vary along the aircraft and are lumped in ®𝑉𝑜𝑡ℎ𝑒𝑟). The flow
tangency boundary condition is thus:[

( ®𝑉∞ − ®Ω × ®𝑟𝑏 + ®𝑉𝑖𝑛𝑑 + ®𝑉𝑜𝑡ℎ𝑒𝑟) · 𝑛̂
]
𝑐𝑝

= 0 (4.80)

where ®𝑟𝑏 is a vector from the aircraft center of gravity to a point of
interest. We will move the induced term to one side, and all other terms
to the other side (where the cp subscript is dropped for simplicity in
notation):

®𝑉𝑖𝑛𝑑 · 𝑛̂ = −( ®𝑉∞ − ®Ω × ®𝑟 + ®𝑉𝑜𝑡ℎ𝑒𝑟) · 𝑛̂ (4.81)
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To keep the notation simple we will denote the velocity on the right-hand
side as ®𝑉𝑒𝑥𝑡 (external velocity).

®𝑉𝑖𝑛𝑑 · 𝑛̂ = −®𝑉𝑒𝑥𝑡 · 𝑛̂ (4.82)

In general the rotational velocity, self-induced velocity, and other
velocity sources like gusts all vary along the aircraft, and so this
boundary condition will be applied separately at each control point 𝑖.

®𝑉𝑖𝑛𝑑,𝑖 · 𝑛̂𝑖 = −®𝑉𝑒𝑥𝑡,𝑖 · 𝑛̂𝑖 (4.83)

External Velocities

Angle of attack and sideslip angle are defined in the standard way
(Fig. 4.31). In this case, the the freestream velocity vector in the body
axes is:

®𝑉∞ = 𝑉∞


cos 𝛼 cos 𝛽
− sin 𝛽

sin 𝛼 cos 𝛽

 (4.84)
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Fig. 4.31 Angle of attack and sideslip
shown in body axes.

The rotational velocity is defined about the center of gravity and is
simply:

Ω =


Ω𝑥

Ω𝑦

Ω𝑧

 (4.85)

The radial vector used in determining rotational velocities is the distance
from the aircraft center of gravity to the control point of interest:

®𝑟𝑖 = ®𝑟𝑐𝑝,𝑖 − ®𝑟𝑐𝑔 (4.86)

If we only have one chordwise panel, or even if we have a few, it
generally doesn’t make sense to use camber in defining the normal
direction. Furthermore, camber was implicitly accounted for in the
use of positioning the bound vortex and control point (recall that the
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Fig. 4.32 Angles and coordinate sys-
tems used to determine normal vector
to each panel. Top figure shows dihe-
dral, while the bottom shows twist.

Fig. 4.33 Panel discretization defined
by the corner points.

derivation assumed parabolic camber of any arbitrary magnitude). The
normal vector is a function of the local twist and dihedral as shown in
Fig. 4.32. Twist cannot be lumped with angle of attack for nonplanar
wings. To illustrate why, imagine the twist on a winglet (sometimes
called the cant angle), it moves the surface in a very different way than
changing the angle of attack of the entire aircraft.

From Fig. 4.32 we can resolve 𝜁̂ and 𝑛̂ into components as follows:

𝜁̂ = − sin 𝜙 𝑦̂ + cos 𝜙𝑧̂ (4.87)

𝑛̂ = sin𝜃𝑥̂ + cos𝜃𝜁̂ (4.88)

Substituting Eq. 4.87 into Eq. 4.88 yields:

𝑛̂ =


sin𝜃

− cos𝜃 sin 𝜙
cos𝜃 cos 𝜙

 (4.89)

Using the panel discretization where 𝑦 and 𝑧 define the corner points
of the horseshoe vortices (Fig. 4.33):

sin 𝜙𝑖 =
𝑧𝑖+1 − 𝑧𝑖√

(𝑦𝑖+1 − 𝑦𝑖)2 + (𝑧𝑖+1 − 𝑧𝑖)2
(4.90)

cos 𝜙𝑖 =
𝑦𝑖+1 − 𝑦𝑖√

(𝑦𝑖+1 − 𝑦𝑖)2 + (𝑧𝑖+1 − 𝑧𝑖)2
(4.91)

Induced Velocities

From the Biot-Savart law (Eq. 4.17) the induced velocity from all of the
vortex filaments at control point 𝑖 is:

®𝑉𝑖𝑛𝑑,𝑖 =
∑
𝑗

Γ𝑗

4𝜋

∫
𝑗

𝑑®𝑙 𝑗 × ®𝑟𝑖 𝑗
|𝑟𝑖 𝑗 |3

(4.92)

where 𝑟𝑖 𝑗 is the distance from a point on the line vortex 𝑗 to control
point 𝑖. We can reexpress this sum by separating out the geometric
terms from the circulation:

®𝑉𝑖𝑛𝑑,𝑖 =
∑
𝑗

𝑉̂𝑖 𝑗Γ𝑗 (4.93)

where 𝑉̂ is the induced velocity at the control point, for unit circulation.
Thus, the boundary condition at the 𝑖th control point (Eq. 4.83) becomes:∑

𝑗

Γ𝑗𝑉̂𝑖 𝑗 · 𝑛̂𝑖 = −®𝑉𝑒𝑥𝑡,𝑖 · 𝑛̂𝑖 (4.94)
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<latexit sha1_base64="Q0shDWIckda9b/NanUy8OsXQGfg=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKYI4BLx4jmAckS5iddJIhsw9neoWw5Ce8eFDEq7/jzb9xkuxBEwsaiqpuuruCRElDrvvtFDY2t7Z3irulvf2Dw6Py8UnLxKkW2BSxinUn4AaVjLBJkhR2Eo08DBS2g8nt3G8/oTYyjh5omqAf8lEkh1JwslKnR2Mk3vf65YpbdRdg68TLSQVyNPrlr94gFmmIEQnFjel6bkJ+xjVJoXBW6qUGEy4mfIRdSyMeovGzxb0zdmGVARvG2lZEbKH+nsh4aMw0DGxnyGlsVr25+J/XTWlY8zMZJSlhJJaLhqliFLP582wgNQpSU0u40NLeysSYay7IRlSyIXirL6+T1lXVc6ve/XWlXsvjKMIZnMMleHADdbiDBjRBgIJneIU359F5cd6dj2VrwclnTuEPnM8fymWPwg==</latexit><latexit sha1_base64="Q0shDWIckda9b/NanUy8OsXQGfg=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKYI4BLx4jmAckS5iddJIhsw9neoWw5Ce8eFDEq7/jzb9xkuxBEwsaiqpuuruCRElDrvvtFDY2t7Z3irulvf2Dw6Py8UnLxKkW2BSxinUn4AaVjLBJkhR2Eo08DBS2g8nt3G8/oTYyjh5omqAf8lEkh1JwslKnR2Mk3vf65YpbdRdg68TLSQVyNPrlr94gFmmIEQnFjel6bkJ+xjVJoXBW6qUGEy4mfIRdSyMeovGzxb0zdmGVARvG2lZEbKH+nsh4aMw0DGxnyGlsVr25+J/XTWlY8zMZJSlhJJaLhqliFLP582wgNQpSU0u40NLeysSYay7IRlSyIXirL6+T1lXVc6ve/XWlXsvjKMIZnMMleHADdbiDBjRBgIJneIU359F5cd6dj2VrwclnTuEPnM8fymWPwg==</latexit><latexit sha1_base64="Q0shDWIckda9b/NanUy8OsXQGfg=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKYI4BLx4jmAckS5iddJIhsw9neoWw5Ce8eFDEq7/jzb9xkuxBEwsaiqpuuruCRElDrvvtFDY2t7Z3irulvf2Dw6Py8UnLxKkW2BSxinUn4AaVjLBJkhR2Eo08DBS2g8nt3G8/oTYyjh5omqAf8lEkh1JwslKnR2Mk3vf65YpbdRdg68TLSQVyNPrlr94gFmmIEQnFjel6bkJ+xjVJoXBW6qUGEy4mfIRdSyMeovGzxb0zdmGVARvG2lZEbKH+nsh4aMw0DGxnyGlsVr25+J/XTWlY8zMZJSlhJJaLhqliFLP582wgNQpSU0u40NLeysSYay7IRlSyIXirL6+T1lXVc6ve/XWlXsvjKMIZnMMleHADdbiDBjRBgIJneIU359F5cd6dj2VrwclnTuEPnM8fymWPwg==</latexit><latexit sha1_base64="Q0shDWIckda9b/NanUy8OsXQGfg=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKYI4BLx4jmAckS5iddJIhsw9neoWw5Ce8eFDEq7/jzb9xkuxBEwsaiqpuuruCRElDrvvtFDY2t7Z3irulvf2Dw6Py8UnLxKkW2BSxinUn4AaVjLBJkhR2Eo08DBS2g8nt3G8/oTYyjh5omqAf8lEkh1JwslKnR2Mk3vf65YpbdRdg68TLSQVyNPrlr94gFmmIEQnFjel6bkJ+xjVJoXBW6qUGEy4mfIRdSyMeovGzxb0zdmGVARvG2lZEbKH+nsh4aMw0DGxnyGlsVr25+J/XTWlY8zMZJSlhJJaLhqliFLP582wgNQpSU0u40NLeysSYay7IRlSyIXirL6+T1lXVc6ve/XWlXsvjKMIZnMMleHADdbiDBjRBgIJneIU359F5cd6dj2VrwclnTuEPnM8fymWPwg==</latexit>

✓2
<latexit sha1_base64="6aWhDv6vGWEQiF8KTe5dkHMp+dw=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8laQI9ljw4rGC/YA2lM122i7dbOLuRCihf8KLB0W8+ne8+W/ctjlo64OBx3szzMwLEykMed63s7G5tb2zW9gr7h8cHh2XTk5bJk41xyaPZaw7ITMohcImCZLYSTSyKJTYDie3c7/9hNqIWD3QNMEgYiMlhoIzslKnR2Mk1q/2S2Wv4i3grhM/J2XI0eiXvnqDmKcRKuKSGdP1vYSCjGkSXOKs2EsNJoxP2Ai7lioWoQmyxb0z99IqA3cYa1uK3IX6eyJjkTHTKLSdEaOxWfXm4n9eN6VhLciESlJCxZeLhql0KXbnz7sDoZGTnFrCuBb2VpePmWacbERFG4K/+vI6aVUrvlfx76/L9VoeRwHO4QKuwIcbqMMdNKAJHCQ8wyu8OY/Oi/PufCxbN5x85gz+wPn8Acvpj8M=</latexit><latexit sha1_base64="6aWhDv6vGWEQiF8KTe5dkHMp+dw=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8laQI9ljw4rGC/YA2lM122i7dbOLuRCihf8KLB0W8+ne8+W/ctjlo64OBx3szzMwLEykMed63s7G5tb2zW9gr7h8cHh2XTk5bJk41xyaPZaw7ITMohcImCZLYSTSyKJTYDie3c7/9hNqIWD3QNMEgYiMlhoIzslKnR2Mk1q/2S2Wv4i3grhM/J2XI0eiXvnqDmKcRKuKSGdP1vYSCjGkSXOKs2EsNJoxP2Ai7lioWoQmyxb0z99IqA3cYa1uK3IX6eyJjkTHTKLSdEaOxWfXm4n9eN6VhLciESlJCxZeLhql0KXbnz7sDoZGTnFrCuBb2VpePmWacbERFG4K/+vI6aVUrvlfx76/L9VoeRwHO4QKuwIcbqMMdNKAJHCQ8wyu8OY/Oi/PufCxbN5x85gz+wPn8Acvpj8M=</latexit><latexit sha1_base64="6aWhDv6vGWEQiF8KTe5dkHMp+dw=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8laQI9ljw4rGC/YA2lM122i7dbOLuRCihf8KLB0W8+ne8+W/ctjlo64OBx3szzMwLEykMed63s7G5tb2zW9gr7h8cHh2XTk5bJk41xyaPZaw7ITMohcImCZLYSTSyKJTYDie3c7/9hNqIWD3QNMEgYiMlhoIzslKnR2Mk1q/2S2Wv4i3grhM/J2XI0eiXvnqDmKcRKuKSGdP1vYSCjGkSXOKs2EsNJoxP2Ai7lioWoQmyxb0z99IqA3cYa1uK3IX6eyJjkTHTKLSdEaOxWfXm4n9eN6VhLciESlJCxZeLhql0KXbnz7sDoZGTnFrCuBb2VpePmWacbERFG4K/+vI6aVUrvlfx76/L9VoeRwHO4QKuwIcbqMMdNKAJHCQ8wyu8OY/Oi/PufCxbN5x85gz+wPn8Acvpj8M=</latexit><latexit sha1_base64="6aWhDv6vGWEQiF8KTe5dkHMp+dw=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8laQI9ljw4rGC/YA2lM122i7dbOLuRCihf8KLB0W8+ne8+W/ctjlo64OBx3szzMwLEykMed63s7G5tb2zW9gr7h8cHh2XTk5bJk41xyaPZaw7ITMohcImCZLYSTSyKJTYDie3c7/9hNqIWD3QNMEgYiMlhoIzslKnR2Mk1q/2S2Wv4i3grhM/J2XI0eiXvnqDmKcRKuKSGdP1vYSCjGkSXOKs2EsNJoxP2Ai7lioWoQmyxb0z99IqA3cYa1uK3IX6eyJjkTHTKLSdEaOxWfXm4n9eN6VhLciESlJCxZeLhql0KXbnz7sDoZGTnFrCuBb2VpePmWacbERFG4K/+vI6aVUrvlfx76/L9VoeRwHO4QKuwIcbqMMdNKAJHCQ8wyu8OY/Oi/PufCxbN5x85gz+wPn8Acvpj8M=</latexit>

dl
<latexit sha1_base64="cIS+YKcWF/OwhP5ZsKrqtC9yxPk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF49V7Ae0oWw2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6hGwSW2DTcCe6lCGgcCu8Hkdu53n1BpnshHM03Rj+lI8ogzaqz0EIphtebW3QXIOvEKUoMCrWH1axAmLItRGiao1n3PTY2fU2U4EzirDDKNKWUTOsK+pZLGqP18cemMXFglJFGibElDFurviZzGWk/jwHbG1Iz1qjcX//P6mYkafs5lmhmUbLkoygQxCZm/TUKukBkxtYQyxe2thI2poszYcCo2BG/15XXSuap7bt27v641G0UcZTiDc7gED26gCXfQgjYwiOAZXuHNmTgvzrvzsWwtOcXMKfyB8/kDje6NVA==</latexit><latexit sha1_base64="cIS+YKcWF/OwhP5ZsKrqtC9yxPk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF49V7Ae0oWw2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6hGwSW2DTcCe6lCGgcCu8Hkdu53n1BpnshHM03Rj+lI8ogzaqz0EIphtebW3QXIOvEKUoMCrWH1axAmLItRGiao1n3PTY2fU2U4EzirDDKNKWUTOsK+pZLGqP18cemMXFglJFGibElDFurviZzGWk/jwHbG1Iz1qjcX//P6mYkafs5lmhmUbLkoygQxCZm/TUKukBkxtYQyxe2thI2poszYcCo2BG/15XXSuap7bt27v641G0UcZTiDc7gED26gCXfQgjYwiOAZXuHNmTgvzrvzsWwtOcXMKfyB8/kDje6NVA==</latexit><latexit sha1_base64="cIS+YKcWF/OwhP5ZsKrqtC9yxPk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF49V7Ae0oWw2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6hGwSW2DTcCe6lCGgcCu8Hkdu53n1BpnshHM03Rj+lI8ogzaqz0EIphtebW3QXIOvEKUoMCrWH1axAmLItRGiao1n3PTY2fU2U4EzirDDKNKWUTOsK+pZLGqP18cemMXFglJFGibElDFurviZzGWk/jwHbG1Iz1qjcX//P6mYkafs5lmhmUbLkoygQxCZm/TUKukBkxtYQyxe2thI2poszYcCo2BG/15XXSuap7bt27v641G0UcZTiDc7gED26gCXfQgjYwiOAZXuHNmTgvzrvzsWwtOcXMKfyB8/kDje6NVA==</latexit><latexit sha1_base64="cIS+YKcWF/OwhP5ZsKrqtC9yxPk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF49V7Ae0oWw2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6hGwSW2DTcCe6lCGgcCu8Hkdu53n1BpnshHM03Rj+lI8ogzaqz0EIphtebW3QXIOvEKUoMCrWH1axAmLItRGiao1n3PTY2fU2U4EzirDDKNKWUTOsK+pZLGqP18cemMXFglJFGibElDFurviZzGWk/jwHbG1Iz1qjcX//P6mYkafs5lmhmUbLkoygQxCZm/TUKukBkxtYQyxe2thI2poszYcCo2BG/15XXSuap7bt27v641G0UcZTiDc7gED26gCXfQgjYwiOAZXuHNmTgvzrvzsWwtOcXMKfyB8/kDje6NVA==</latexit>

r
<latexit sha1_base64="t/pT92dHPcUSqbzT5hE9+RmxEJI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSw3LFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NWHdz7hMUoOSrRaFqSAmJouvyYgrZEbMLKFMcXsrYROqKDM2m5INwVt/eZN0bqqeW/Vat5VGPY+jCBdwCdfgQQ0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/aH4zs</latexit><latexit sha1_base64="t/pT92dHPcUSqbzT5hE9+RmxEJI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSw3LFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NWHdz7hMUoOSrRaFqSAmJouvyYgrZEbMLKFMcXsrYROqKDM2m5INwVt/eZN0bqqeW/Vat5VGPY+jCBdwCdfgQQ0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/aH4zs</latexit><latexit sha1_base64="t/pT92dHPcUSqbzT5hE9+RmxEJI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSw3LFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NWHdz7hMUoOSrRaFqSAmJouvyYgrZEbMLKFMcXsrYROqKDM2m5INwVt/eZN0bqqeW/Vat5VGPY+jCBdwCdfgQQ0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/aH4zs</latexit><latexit sha1_base64="t/pT92dHPcUSqbzT5hE9+RmxEJI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSw3LFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NWHdz7hMUoOSrRaFqSAmJouvyYgrZEbMLKFMcXsrYROqKDM2m5INwVt/eZN0bqqeW/Vat5VGPY+jCBdwCdfgQQ0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/aH4zs</latexit>

h
<latexit sha1_base64="tznJ5l2ae4xkmpo8iX0nAmXub7k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSazIsV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VYa9TyOIlzAJVyDBzVowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AyveM4g==</latexit><latexit sha1_base64="tznJ5l2ae4xkmpo8iX0nAmXub7k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSazIsV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VYa9TyOIlzAJVyDBzVowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AyveM4g==</latexit><latexit sha1_base64="tznJ5l2ae4xkmpo8iX0nAmXub7k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSazIsV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VYa9TyOIlzAJVyDBzVowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AyveM4g==</latexit><latexit sha1_base64="tznJ5l2ae4xkmpo8iX0nAmXub7k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSazIsV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VYa9TyOIlzAJVyDBzVowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AyveM4g==</latexit>

✓
<latexit sha1_base64="uASEump3d8H+KrkJ7Q9t1+uECus=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKYI4BLx4jmAckS5id9CZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZDk2upTadiFmQQkETBUropAZYEkloR+Pbud9+AmOFVg84SSFM2FCJWHCGTmr1cATI+uWKX/UXoOskyEmF5Gj0y1+9geZZAgq5ZNZ2Az/FcMoMCi5hVuplFlLGx2wIXUcVS8CG08W1M3rhlAGNtXGlkC7U3xNTllg7SSLXmTAc2VVvLv7ndTOMa+FUqDRDUHy5KM4kRU3nr9OBMMBRThxh3Ah3K+UjZhhHF1DJhRCsvrxOWlfVwK8G99eVei2Po0jOyDm5JAG5IXVyRxqkSTh5JM/klbx52nvx3r2PZWvBy2dOyR94nz+g9Y8e</latexit><latexit sha1_base64="uASEump3d8H+KrkJ7Q9t1+uECus=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKYI4BLx4jmAckS5id9CZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZDk2upTadiFmQQkETBUropAZYEkloR+Pbud9+AmOFVg84SSFM2FCJWHCGTmr1cATI+uWKX/UXoOskyEmF5Gj0y1+9geZZAgq5ZNZ2Az/FcMoMCi5hVuplFlLGx2wIXUcVS8CG08W1M3rhlAGNtXGlkC7U3xNTllg7SSLXmTAc2VVvLv7ndTOMa+FUqDRDUHy5KM4kRU3nr9OBMMBRThxh3Ah3K+UjZhhHF1DJhRCsvrxOWlfVwK8G99eVei2Po0jOyDm5JAG5IXVyRxqkSTh5JM/klbx52nvx3r2PZWvBy2dOyR94nz+g9Y8e</latexit><latexit sha1_base64="uASEump3d8H+KrkJ7Q9t1+uECus=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKYI4BLx4jmAckS5id9CZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZDk2upTadiFmQQkETBUropAZYEkloR+Pbud9+AmOFVg84SSFM2FCJWHCGTmr1cATI+uWKX/UXoOskyEmF5Gj0y1+9geZZAgq5ZNZ2Az/FcMoMCi5hVuplFlLGx2wIXUcVS8CG08W1M3rhlAGNtXGlkC7U3xNTllg7SSLXmTAc2VVvLv7ndTOMa+FUqDRDUHy5KM4kRU3nr9OBMMBRThxh3Ah3K+UjZhhHF1DJhRCsvrxOWlfVwK8G99eVei2Po0jOyDm5JAG5IXVyRxqkSTh5JM/klbx52nvx3r2PZWvBy2dOyR94nz+g9Y8e</latexit><latexit sha1_base64="uASEump3d8H+KrkJ7Q9t1+uECus=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKYI4BLx4jmAckS5id9CZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZDk2upTadiFmQQkETBUropAZYEkloR+Pbud9+AmOFVg84SSFM2FCJWHCGTmr1cATI+uWKX/UXoOskyEmF5Gj0y1+9geZZAgq5ZNZ2Az/FcMoMCi5hVuplFlLGx2wIXUcVS8CG08W1M3rhlAGNtXGlkC7U3xNTllg7SSLXmTAc2VVvLv7ndTOMa+FUqDRDUHy5KM4kRU3nr9OBMMBRThxh3Ah3K+UjZhhHF1DJhRCsvrxOWlfVwK8G99eVei2Po0jOyDm5JAG5IXVyRxqkSTh5JM/klbx52nvx3r2PZWvBy2dOyR94nz+g9Y8e</latexit>

~r0
<latexit sha1_base64="Yqwm5QmKQWZs17E66DPxpjRm2G0=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EMGXAxjKCSZTkCHubSbJkd+/Y3QuEI7/CxkIRW3+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gobm1vbO8Xd0t7+weFR+fikZeJUM2yyWMT6MaIGBVfYtNwKfEw0UhkJbEfj27nfnqA2PFYPdppgKOlQ8QFn1DrpqTtBlulZz++VK37VX4CskyAnFcjR6JW/uv2YpRKVZYIa0wn8xIYZ1ZYzgbNSNzWYUDamQ+w4qqhEE2aLg2fkwil9Moi1K2XJQv09kVFpzFRGrlNSOzKr3lz8z+ukdlALM66S1KJiy0WDVBAbk/n3pM81MiumjlCmubuVsBHVlFmXUcmFEKy+vE5aV9XArwb315V6LY+jCGdwDpcQwA3U4Q4a0AQGEp7hFd487b14797HsrXg5TOn8Afe5w/O15Bd</latexit><latexit sha1_base64="Yqwm5QmKQWZs17E66DPxpjRm2G0=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EMGXAxjKCSZTkCHubSbJkd+/Y3QuEI7/CxkIRW3+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gobm1vbO8Xd0t7+weFR+fikZeJUM2yyWMT6MaIGBVfYtNwKfEw0UhkJbEfj27nfnqA2PFYPdppgKOlQ8QFn1DrpqTtBlulZz++VK37VX4CskyAnFcjR6JW/uv2YpRKVZYIa0wn8xIYZ1ZYzgbNSNzWYUDamQ+w4qqhEE2aLg2fkwil9Moi1K2XJQv09kVFpzFRGrlNSOzKr3lz8z+ukdlALM66S1KJiy0WDVBAbk/n3pM81MiumjlCmubuVsBHVlFmXUcmFEKy+vE5aV9XArwb315V6LY+jCGdwDpcQwA3U4Q4a0AQGEp7hFd487b14797HsrXg5TOn8Afe5w/O15Bd</latexit><latexit sha1_base64="Yqwm5QmKQWZs17E66DPxpjRm2G0=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EMGXAxjKCSZTkCHubSbJkd+/Y3QuEI7/CxkIRW3+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gobm1vbO8Xd0t7+weFR+fikZeJUM2yyWMT6MaIGBVfYtNwKfEw0UhkJbEfj27nfnqA2PFYPdppgKOlQ8QFn1DrpqTtBlulZz++VK37VX4CskyAnFcjR6JW/uv2YpRKVZYIa0wn8xIYZ1ZYzgbNSNzWYUDamQ+w4qqhEE2aLg2fkwil9Moi1K2XJQv09kVFpzFRGrlNSOzKr3lz8z+ukdlALM66S1KJiy0WDVBAbk/n3pM81MiumjlCmubuVsBHVlFmXUcmFEKy+vE5aV9XArwb315V6LY+jCGdwDpcQwA3U4Q4a0AQGEp7hFd487b14797HsrXg5TOn8Afe5w/O15Bd</latexit><latexit sha1_base64="Yqwm5QmKQWZs17E66DPxpjRm2G0=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EMGXAxjKCSZTkCHubSbJkd+/Y3QuEI7/CxkIRW3+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gobm1vbO8Xd0t7+weFR+fikZeJUM2yyWMT6MaIGBVfYtNwKfEw0UhkJbEfj27nfnqA2PFYPdppgKOlQ8QFn1DrpqTtBlulZz++VK37VX4CskyAnFcjR6JW/uv2YpRKVZYIa0wn8xIYZ1ZYzgbNSNzWYUDamQ+w4qqhEE2aLg2fkwil9Moi1K2XJQv09kVFpzFRGrlNSOzKr3lz8z+ukdlALM66S1KJiy0WDVBAbk/n3pM81MiumjlCmubuVsBHVlFmXUcmFEKy+vE5aV9XArwb315V6LY+jCGdwDpcQwA3U4Q4a0AQGEp7hFd487b14797HsrXg5TOn8Afe5w/O15Bd</latexit>

~r1
<latexit sha1_base64="VpJz9kSKCHTdiRSPJH1G8K2sZOA=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EMGXAxjKCSZTkCHubSbJkd+/Y3QuEI7/CxkIRW3+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gobm1vbO8Xd0t7+weFR+fikZeJUM2yyWMT6MaIGBVfYtNwKfEw0UhkJbEfj27nfnqA2PFYPdppgKOlQ8QFn1DrpqTtBlulZL+iVK37VX4CskyAnFcjR6JW/uv2YpRKVZYIa0wn8xIYZ1ZYzgbNSNzWYUDamQ+w4qqhEE2aLg2fkwil9Moi1K2XJQv09kVFpzFRGrlNSOzKr3lz8z+ukdlALM66S1KJiy0WDVBAbk/n3pM81MiumjlCmubuVsBHVlFmXUcmFEKy+vE5aV9XArwb315V6LY+jCGdwDpcQwA3U4Q4a0AQGEp7hFd487b14797HsrXg5TOn8Afe5w/QW5Be</latexit><latexit sha1_base64="VpJz9kSKCHTdiRSPJH1G8K2sZOA=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EMGXAxjKCSZTkCHubSbJkd+/Y3QuEI7/CxkIRW3+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gobm1vbO8Xd0t7+weFR+fikZeJUM2yyWMT6MaIGBVfYtNwKfEw0UhkJbEfj27nfnqA2PFYPdppgKOlQ8QFn1DrpqTtBlulZL+iVK37VX4CskyAnFcjR6JW/uv2YpRKVZYIa0wn8xIYZ1ZYzgbNSNzWYUDamQ+w4qqhEE2aLg2fkwil9Moi1K2XJQv09kVFpzFRGrlNSOzKr3lz8z+ukdlALM66S1KJiy0WDVBAbk/n3pM81MiumjlCmubuVsBHVlFmXUcmFEKy+vE5aV9XArwb315V6LY+jCGdwDpcQwA3U4Q4a0AQGEp7hFd487b14797HsrXg5TOn8Afe5w/QW5Be</latexit><latexit sha1_base64="VpJz9kSKCHTdiRSPJH1G8K2sZOA=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EMGXAxjKCSZTkCHubSbJkd+/Y3QuEI7/CxkIRW3+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gobm1vbO8Xd0t7+weFR+fikZeJUM2yyWMT6MaIGBVfYtNwKfEw0UhkJbEfj27nfnqA2PFYPdppgKOlQ8QFn1DrpqTtBlulZL+iVK37VX4CskyAnFcjR6JW/uv2YpRKVZYIa0wn8xIYZ1ZYzgbNSNzWYUDamQ+w4qqhEE2aLg2fkwil9Moi1K2XJQv09kVFpzFRGrlNSOzKr3lz8z+ukdlALM66S1KJiy0WDVBAbk/n3pM81MiumjlCmubuVsBHVlFmXUcmFEKy+vE5aV9XArwb315V6LY+jCGdwDpcQwA3U4Q4a0AQGEp7hFd487b14797HsrXg5TOn8Afe5w/QW5Be</latexit><latexit sha1_base64="VpJz9kSKCHTdiRSPJH1G8K2sZOA=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EMGXAxjKCSZTkCHubSbJkd+/Y3QuEI7/CxkIRW3+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gobm1vbO8Xd0t7+weFR+fikZeJUM2yyWMT6MaIGBVfYtNwKfEw0UhkJbEfj27nfnqA2PFYPdppgKOlQ8QFn1DrpqTtBlulZL+iVK37VX4CskyAnFcjR6JW/uv2YpRKVZYIa0wn8xIYZ1ZYzgbNSNzWYUDamQ+w4qqhEE2aLg2fkwil9Moi1K2XJQv09kVFpzFRGrlNSOzKr3lz8z+ukdlALM66S1KJiy0WDVBAbk/n3pM81MiumjlCmubuVsBHVlFmXUcmFEKy+vE5aV9XArwb315V6LY+jCGdwDpcQwA3U4Q4a0AQGEp7hFd487b14797HsrXg5TOn8Afe5w/QW5Be</latexit>

~r2
<latexit sha1_base64="7Af5aNx0ApMkAHsQXdbCv+pAG9k=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKYI8FLx4r2A9pQ9lsJ+3SzSbsbgol9Fd48aCIV3+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1FjpqT9Flqn5oDYoV9yquwTZJF5OKpCjOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5L/VRjQtmEjrBnqaQRaj9bHjwnV1YZkjBWtqQhS/X3REYjrWdRYDsjasZ63VuI/3m91IR1P+MySQ1KtloUpoKYmCy+J0OukBkxs4Qyxe2thI2poszYjEo2BG/95U3SrlU9t+o93FQa9TyOIlzAJVyDB7fQgHtoQgsYRPAMr/DmKOfFeXc+Vq0FJ585hz9wPn8A0d+QXw==</latexit><latexit sha1_base64="7Af5aNx0ApMkAHsQXdbCv+pAG9k=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKYI8FLx4r2A9pQ9lsJ+3SzSbsbgol9Fd48aCIV3+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1FjpqT9Flqn5oDYoV9yquwTZJF5OKpCjOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5L/VRjQtmEjrBnqaQRaj9bHjwnV1YZkjBWtqQhS/X3REYjrWdRYDsjasZ63VuI/3m91IR1P+MySQ1KtloUpoKYmCy+J0OukBkxs4Qyxe2thI2poszYjEo2BG/95U3SrlU9t+o93FQa9TyOIlzAJVyDB7fQgHtoQgsYRPAMr/DmKOfFeXc+Vq0FJ585hz9wPn8A0d+QXw==</latexit><latexit sha1_base64="7Af5aNx0ApMkAHsQXdbCv+pAG9k=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKYI8FLx4r2A9pQ9lsJ+3SzSbsbgol9Fd48aCIV3+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1FjpqT9Flqn5oDYoV9yquwTZJF5OKpCjOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5L/VRjQtmEjrBnqaQRaj9bHjwnV1YZkjBWtqQhS/X3REYjrWdRYDsjasZ63VuI/3m91IR1P+MySQ1KtloUpoKYmCy+J0OukBkxs4Qyxe2thI2poszYjEo2BG/95U3SrlU9t+o93FQa9TyOIlzAJVyDB7fQgHtoQgsYRPAMr/DmKOfFeXc+Vq0FJ585hz9wPn8A0d+QXw==</latexit><latexit sha1_base64="7Af5aNx0ApMkAHsQXdbCv+pAG9k=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKYI8FLx4r2A9pQ9lsJ+3SzSbsbgol9Fd48aCIV3+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1FjpqT9Flqn5oDYoV9yquwTZJF5OKpCjOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5L/VRjQtmEjrBnqaQRaj9bHjwnV1YZkjBWtqQhS/X3REYjrWdRYDsjasZ63VuI/3m91IR1P+MySQ1KtloUpoKYmCy+J0OukBkxs4Qyxe2thI2poszYjEo2BG/95U3SrlU9t+o93FQa9TyOIlzAJVyDB7fQgHtoQgsYRPAMr/DmKOfFeXc+Vq0FJ585hz9wPn8A0d+QXw==</latexit>

x
<latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit>

x
<latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit>
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Fig. 4.34 Definitions for vectors used
in horseshoe vortex derivation.

Each control point is one equation, and putting them all together forms
a linear system of equations:

[𝐴𝐼𝐶]Γ = 𝑏 (4.95)

where
𝑏𝑖 = −®𝑉𝑒𝑥𝑡,𝑖 · 𝑛̂𝑖 (4.96)

and the aerodynamic influence coefficient matrix is given by:

𝐴𝐼𝐶𝑖 𝑗 = 𝑉̂𝑖 𝑗 · 𝑛̂𝑖 (4.97)

The main challenge then is to determine 𝑉̂𝑖 𝑗
We use the velocity induced by a vortex segment (Eq. 4.24) to com-

pute the induced velocity from a horseshoe vortex, which is comprised
of three segments. This time we will need to be more careful with
directions. First, we convert this expression in terms of vectors so
that we can use it more generally in a computational implementation.
Second, the angles 𝜃 are less convenient to work with, we would prefer
to use vectors instead. We define the quantities ®𝑟0, ®𝑟1 and ®𝑟2 as shown
in Fig. 4.34. Vector ®𝑟0 starts at one end of the vortex filament and ends
at the other end of the filament pointing in the direction of positive
circulation according to the right hand rule. Vector ®𝑟1 points from the
start of the filament to the point of interest, and vector ®𝑟2 points from
the end of the filament to the point of interest.

We use the definition of the dot product to obtain the angles.

®𝑟0 · ®𝑟1 = |®𝑟0 | |®𝑟1 | cos𝜃1 ⇒ cos𝜃1 =
®𝑟0 · ®𝑟1
|®𝑟0 | |®𝑟1 |

(4.98)

®𝑟0 · ®𝑟2 = |®𝑟0 | |®𝑟2 | cos𝜃2 ⇒ cos𝜃2 =
®𝑟0 · ®𝑟2
|®𝑟0 | |®𝑟2 |

(4.99)

The distance ℎ is just 𝑟1 sin𝜃1, but again we want to eliminate the explicit
dependence on angles. Using the definition of the cross product:

|®𝑟0 × ®𝑟1 | = |®𝑟0 | |®𝑟1 | sin𝜃1 (4.100)

Thus,

ℎ = |®𝑟1 |
|®𝑟0 × ®𝑟1 |
|®𝑟0 | |®𝑟1 |

=
|®𝑟0 × ®𝑟1 |
|®𝑟0 |

(4.101)

Finally, we need to determine the direction of 𝑉𝜃. We have defined ®𝑟0
to correspond to the direction of the circulation ®Γ. Thus, the direction
is a unit vector in the direction of ®𝑟0 × ®𝑟1. In other words,

®𝑉𝜃 = 𝑉𝜃
®𝑟0 × ®𝑟1
|®𝑟0 × ®𝑟1 |

(4.102)



4 Finite Wing 135

Putting all of these pieces together yields:

®𝑉𝜃 =
Γ|®𝑟0 |

4𝜋|®𝑟0 × ®𝑟1 |
®𝑟0 × ®𝑟1
|®𝑟0 × ®𝑟1 |

(
®𝑟0 · ®𝑟1
|®𝑟0 | |®𝑟1 |

− ®𝑟0 · ®𝑟2
|®𝑟0 | |®𝑟2 |

)
=

Γ

4𝜋
®𝑟0 × ®𝑟1
|®𝑟0 × ®𝑟1 |2

(
®𝑟0 · ®𝑟1
|®𝑟1 |

− ®𝑟0 · ®𝑟2
|®𝑟2 |

) (4.103)

To simplify further we can express ®𝑟0 in terms of ®𝑟1 and ®𝑟2:

®𝑟0 = ®𝑟1 − ®𝑟2 (4.104)

Making this substitution yields:

=
Γ

4𝜋
®𝑟1 × ®𝑟2
|®𝑟1 × ®𝑟2 |2

(
|®𝑟1 |2 − ®𝑟2 · ®𝑟1

|®𝑟1 |
− ®𝑟1 · ®𝑟2 − |®𝑟2 |2

|®𝑟2 |

)
(4.105)

We can expand the cross product in the denominator:

|®𝑟1 × ®𝑟2 |2 = (®𝑟1 × ®𝑟2) · (®𝑟1 × ®𝑟2)
= (®𝑟1 · ®𝑟1)(®𝑟2 · ®𝑟2) − (®𝑟2 · ®𝑟1)(®𝑟1 · ®𝑟2)
= |®𝑟1 |2 |®𝑟2 |2 − (®𝑟1 · ®𝑟2)2

(4.106)

Let’s also simplify the expression in parenthesis from Eq. 4.105. We
will factor out a common term:(

|®𝑟1 |2 − ®𝑟2 · ®𝑟1
|®𝑟1 |

− ®𝑟1 · ®𝑟2 − |®𝑟2 |2
|®𝑟2 |

)
=

(
|®𝑟1 | −

®𝑟1 · ®𝑟2
|®𝑟1 |

− ®𝑟1 · ®𝑟2
|®𝑟2 |

+ |®𝑟2 |
)

=

(
|®𝑟1 | |®𝑟2 |
|®𝑟2 |

− ®𝑟1 · ®𝑟2
|®𝑟1 |

− ®𝑟1 · ®𝑟2
|®𝑟2 |

+ |®𝑟1 | |®𝑟2 |
|®𝑟1 |

)
= (|®𝑟1 | |®𝑟2 | − ®𝑟1 · ®𝑟2)

(
1
|®𝑟2 |

+ 1
|®𝑟1 |

)
(4.107)

If we substitute Eq. 4.106 and Eq. 4.107 into Eq. 4.105 we get

®𝑉𝜃 =
Γ

4𝜋
®𝑟1 × ®𝑟2

(|®𝑟1 |2 |®𝑟2 |2 − (®𝑟1 · ®𝑟2)2)
(|®𝑟1 | |®𝑟2 | − ®𝑟1 · ®𝑟2)

(
1
|®𝑟2 |

+ 1
|®𝑟1 |

)
(4.108)

We can now factor the term in the denominator

|®𝑟1 |2 |®𝑟2 |2 − (®𝑟1 · ®𝑟2)2 =
[
|®𝑟1 | |®𝑟2 | + (®𝑟1 · ®𝑟2)

] [
|®𝑟1 | |®𝑟2 | − (®𝑟1 · ®𝑟2)

]
(4.109)

which partially cancels with one of the terms in the numerator. The
result is an expression for the induced velocity from one vortex filament
in terms of only the two vectors ®𝑟1 and ®𝑟2.

®𝑉𝜃 =
Γ

4𝜋
®𝑟1 × ®𝑟2

(|®𝑟1 | |®𝑟2 | + ®𝑟1 · ®𝑟2)

(
1
| ®𝑟1 |

+ 1
| ®𝑟2 |

)
(4.110)
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dl
<latexit sha1_base64="cIS+YKcWF/OwhP5ZsKrqtC9yxPk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF49V7Ae0oWw2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6hGwSW2DTcCe6lCGgcCu8Hkdu53n1BpnshHM03Rj+lI8ogzaqz0EIphtebW3QXIOvEKUoMCrWH1axAmLItRGiao1n3PTY2fU2U4EzirDDKNKWUTOsK+pZLGqP18cemMXFglJFGibElDFurviZzGWk/jwHbG1Iz1qjcX//P6mYkafs5lmhmUbLkoygQxCZm/TUKukBkxtYQyxe2thI2poszYcCo2BG/15XXSuap7bt27v641G0UcZTiDc7gED26gCXfQgjYwiOAZXuHNmTgvzrvzsWwtOcXMKfyB8/kDje6NVA==</latexit><latexit sha1_base64="cIS+YKcWF/OwhP5ZsKrqtC9yxPk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF49V7Ae0oWw2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6hGwSW2DTcCe6lCGgcCu8Hkdu53n1BpnshHM03Rj+lI8ogzaqz0EIphtebW3QXIOvEKUoMCrWH1axAmLItRGiao1n3PTY2fU2U4EzirDDKNKWUTOsK+pZLGqP18cemMXFglJFGibElDFurviZzGWk/jwHbG1Iz1qjcX//P6mYkafs5lmhmUbLkoygQxCZm/TUKukBkxtYQyxe2thI2poszYcCo2BG/15XXSuap7bt27v641G0UcZTiDc7gED26gCXfQgjYwiOAZXuHNmTgvzrvzsWwtOcXMKfyB8/kDje6NVA==</latexit><latexit sha1_base64="cIS+YKcWF/OwhP5ZsKrqtC9yxPk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF49V7Ae0oWw2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6hGwSW2DTcCe6lCGgcCu8Hkdu53n1BpnshHM03Rj+lI8ogzaqz0EIphtebW3QXIOvEKUoMCrWH1axAmLItRGiao1n3PTY2fU2U4EzirDDKNKWUTOsK+pZLGqP18cemMXFglJFGibElDFurviZzGWk/jwHbG1Iz1qjcX//P6mYkafs5lmhmUbLkoygQxCZm/TUKukBkxtYQyxe2thI2poszYcCo2BG/15XXSuap7bt27v641G0UcZTiDc7gED26gCXfQgjYwiOAZXuHNmTgvzrvzsWwtOcXMKfyB8/kDje6NVA==</latexit><latexit sha1_base64="cIS+YKcWF/OwhP5ZsKrqtC9yxPk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF49V7Ae0oWw2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6hGwSW2DTcCe6lCGgcCu8Hkdu53n1BpnshHM03Rj+lI8ogzaqz0EIphtebW3QXIOvEKUoMCrWH1axAmLItRGiao1n3PTY2fU2U4EzirDDKNKWUTOsK+pZLGqP18cemMXFglJFGibElDFurviZzGWk/jwHbG1Iz1qjcX//P6mYkafs5lmhmUbLkoygQxCZm/TUKukBkxtYQyxe2thI2poszYcCo2BG/15XXSuap7bt27v641G0UcZTiDc7gED26gCXfQgjYwiOAZXuHNmTgvzrvzsWwtOcXMKfyB8/kDje6NVA==</latexit>

r
<latexit sha1_base64="t/pT92dHPcUSqbzT5hE9+RmxEJI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSw3LFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NWHdz7hMUoOSrRaFqSAmJouvyYgrZEbMLKFMcXsrYROqKDM2m5INwVt/eZN0bqqeW/Vat5VGPY+jCBdwCdfgQQ0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/aH4zs</latexit><latexit sha1_base64="t/pT92dHPcUSqbzT5hE9+RmxEJI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSw3LFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NWHdz7hMUoOSrRaFqSAmJouvyYgrZEbMLKFMcXsrYROqKDM2m5INwVt/eZN0bqqeW/Vat5VGPY+jCBdwCdfgQQ0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/aH4zs</latexit><latexit sha1_base64="t/pT92dHPcUSqbzT5hE9+RmxEJI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSw3LFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NWHdz7hMUoOSrRaFqSAmJouvyYgrZEbMLKFMcXsrYROqKDM2m5INwVt/eZN0bqqeW/Vat5VGPY+jCBdwCdfgQQ0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/aH4zs</latexit><latexit sha1_base64="t/pT92dHPcUSqbzT5hE9+RmxEJI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSw3LFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NWHdz7hMUoOSrRaFqSAmJouvyYgrZEbMLKFMcXsrYROqKDM2m5INwVt/eZN0bqqeW/Vat5VGPY+jCBdwCdfgQQ0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/aH4zs</latexit>

h
<latexit sha1_base64="tznJ5l2ae4xkmpo8iX0nAmXub7k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSazIsV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VYa9TyOIlzAJVyDBzVowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AyveM4g==</latexit><latexit sha1_base64="tznJ5l2ae4xkmpo8iX0nAmXub7k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSazIsV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VYa9TyOIlzAJVyDBzVowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AyveM4g==</latexit><latexit sha1_base64="tznJ5l2ae4xkmpo8iX0nAmXub7k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSazIsV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VYa9TyOIlzAJVyDBzVowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AyveM4g==</latexit><latexit sha1_base64="tznJ5l2ae4xkmpo8iX0nAmXub7k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSazIsV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VYa9TyOIlzAJVyDBzVowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AyveM4g==</latexit>

✓
<latexit sha1_base64="uASEump3d8H+KrkJ7Q9t1+uECus=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKYI4BLx4jmAckS5id9CZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZDk2upTadiFmQQkETBUropAZYEkloR+Pbud9+AmOFVg84SSFM2FCJWHCGTmr1cATI+uWKX/UXoOskyEmF5Gj0y1+9geZZAgq5ZNZ2Az/FcMoMCi5hVuplFlLGx2wIXUcVS8CG08W1M3rhlAGNtXGlkC7U3xNTllg7SSLXmTAc2VVvLv7ndTOMa+FUqDRDUHy5KM4kRU3nr9OBMMBRThxh3Ah3K+UjZhhHF1DJhRCsvrxOWlfVwK8G99eVei2Po0jOyDm5JAG5IXVyRxqkSTh5JM/klbx52nvx3r2PZWvBy2dOyR94nz+g9Y8e</latexit><latexit sha1_base64="uASEump3d8H+KrkJ7Q9t1+uECus=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKYI4BLx4jmAckS5id9CZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZDk2upTadiFmQQkETBUropAZYEkloR+Pbud9+AmOFVg84SSFM2FCJWHCGTmr1cATI+uWKX/UXoOskyEmF5Gj0y1+9geZZAgq5ZNZ2Az/FcMoMCi5hVuplFlLGx2wIXUcVS8CG08W1M3rhlAGNtXGlkC7U3xNTllg7SSLXmTAc2VVvLv7ndTOMa+FUqDRDUHy5KM4kRU3nr9OBMMBRThxh3Ah3K+UjZhhHF1DJhRCsvrxOWlfVwK8G99eVei2Po0jOyDm5JAG5IXVyRxqkSTh5JM/klbx52nvx3r2PZWvBy2dOyR94nz+g9Y8e</latexit><latexit sha1_base64="uASEump3d8H+KrkJ7Q9t1+uECus=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKYI4BLx4jmAckS5id9CZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZDk2upTadiFmQQkETBUropAZYEkloR+Pbud9+AmOFVg84SSFM2FCJWHCGTmr1cATI+uWKX/UXoOskyEmF5Gj0y1+9geZZAgq5ZNZ2Az/FcMoMCi5hVuplFlLGx2wIXUcVS8CG08W1M3rhlAGNtXGlkC7U3xNTllg7SSLXmTAc2VVvLv7ndTOMa+FUqDRDUHy5KM4kRU3nr9OBMMBRThxh3Ah3K+UjZhhHF1DJhRCsvrxOWlfVwK8G99eVei2Po0jOyDm5JAG5IXVyRxqkSTh5JM/klbx52nvx3r2PZWvBy2dOyR94nz+g9Y8e</latexit><latexit sha1_base64="uASEump3d8H+KrkJ7Q9t1+uECus=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKYI4BLx4jmAckS5id9CZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZDk2upTadiFmQQkETBUropAZYEkloR+Pbud9+AmOFVg84SSFM2FCJWHCGTmr1cATI+uWKX/UXoOskyEmF5Gj0y1+9geZZAgq5ZNZ2Az/FcMoMCi5hVuplFlLGx2wIXUcVS8CG08W1M3rhlAGNtXGlkC7U3xNTllg7SSLXmTAc2VVvLv7ndTOMa+FUqDRDUHy5KM4kRU3nr9OBMMBRThxh3Ah3K+UjZhhHF1DJhRCsvrxOWlfVwK8G99eVei2Po0jOyDm5JAG5IXVyRxqkSTh5JM/klbx52nvx3r2PZWvBy2dOyR94nz+g9Y8e</latexit>

~r0
<latexit sha1_base64="Yqwm5QmKQWZs17E66DPxpjRm2G0=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EMGXAxjKCSZTkCHubSbJkd+/Y3QuEI7/CxkIRW3+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gobm1vbO8Xd0t7+weFR+fikZeJUM2yyWMT6MaIGBVfYtNwKfEw0UhkJbEfj27nfnqA2PFYPdppgKOlQ8QFn1DrpqTtBlulZz++VK37VX4CskyAnFcjR6JW/uv2YpRKVZYIa0wn8xIYZ1ZYzgbNSNzWYUDamQ+w4qqhEE2aLg2fkwil9Moi1K2XJQv09kVFpzFRGrlNSOzKr3lz8z+ukdlALM66S1KJiy0WDVBAbk/n3pM81MiumjlCmubuVsBHVlFmXUcmFEKy+vE5aV9XArwb315V6LY+jCGdwDpcQwA3U4Q4a0AQGEp7hFd487b14797HsrXg5TOn8Afe5w/O15Bd</latexit><latexit sha1_base64="Yqwm5QmKQWZs17E66DPxpjRm2G0=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EMGXAxjKCSZTkCHubSbJkd+/Y3QuEI7/CxkIRW3+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gobm1vbO8Xd0t7+weFR+fikZeJUM2yyWMT6MaIGBVfYtNwKfEw0UhkJbEfj27nfnqA2PFYPdppgKOlQ8QFn1DrpqTtBlulZz++VK37VX4CskyAnFcjR6JW/uv2YpRKVZYIa0wn8xIYZ1ZYzgbNSNzWYUDamQ+w4qqhEE2aLg2fkwil9Moi1K2XJQv09kVFpzFRGrlNSOzKr3lz8z+ukdlALM66S1KJiy0WDVBAbk/n3pM81MiumjlCmubuVsBHVlFmXUcmFEKy+vE5aV9XArwb315V6LY+jCGdwDpcQwA3U4Q4a0AQGEp7hFd487b14797HsrXg5TOn8Afe5w/O15Bd</latexit><latexit sha1_base64="Yqwm5QmKQWZs17E66DPxpjRm2G0=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EMGXAxjKCSZTkCHubSbJkd+/Y3QuEI7/CxkIRW3+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gobm1vbO8Xd0t7+weFR+fikZeJUM2yyWMT6MaIGBVfYtNwKfEw0UhkJbEfj27nfnqA2PFYPdppgKOlQ8QFn1DrpqTtBlulZz++VK37VX4CskyAnFcjR6JW/uv2YpRKVZYIa0wn8xIYZ1ZYzgbNSNzWYUDamQ+w4qqhEE2aLg2fkwil9Moi1K2XJQv09kVFpzFRGrlNSOzKr3lz8z+ukdlALM66S1KJiy0WDVBAbk/n3pM81MiumjlCmubuVsBHVlFmXUcmFEKy+vE5aV9XArwb315V6LY+jCGdwDpcQwA3U4Q4a0AQGEp7hFd487b14797HsrXg5TOn8Afe5w/O15Bd</latexit><latexit sha1_base64="Yqwm5QmKQWZs17E66DPxpjRm2G0=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EMGXAxjKCSZTkCHubSbJkd+/Y3QuEI7/CxkIRW3+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gobm1vbO8Xd0t7+weFR+fikZeJUM2yyWMT6MaIGBVfYtNwKfEw0UhkJbEfj27nfnqA2PFYPdppgKOlQ8QFn1DrpqTtBlulZz++VK37VX4CskyAnFcjR6JW/uv2YpRKVZYIa0wn8xIYZ1ZYzgbNSNzWYUDamQ+w4qqhEE2aLg2fkwil9Moi1K2XJQv09kVFpzFRGrlNSOzKr3lz8z+ukdlALM66S1KJiy0WDVBAbk/n3pM81MiumjlCmubuVsBHVlFmXUcmFEKy+vE5aV9XArwb315V6LY+jCGdwDpcQwA3U4Q4a0AQGEp7hFd487b14797HsrXg5TOn8Afe5w/O15Bd</latexit>

~r1
<latexit sha1_base64="VpJz9kSKCHTdiRSPJH1G8K2sZOA=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EMGXAxjKCSZTkCHubSbJkd+/Y3QuEI7/CxkIRW3+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gobm1vbO8Xd0t7+weFR+fikZeJUM2yyWMT6MaIGBVfYtNwKfEw0UhkJbEfj27nfnqA2PFYPdppgKOlQ8QFn1DrpqTtBlulZL+iVK37VX4CskyAnFcjR6JW/uv2YpRKVZYIa0wn8xIYZ1ZYzgbNSNzWYUDamQ+w4qqhEE2aLg2fkwil9Moi1K2XJQv09kVFpzFRGrlNSOzKr3lz8z+ukdlALM66S1KJiy0WDVBAbk/n3pM81MiumjlCmubuVsBHVlFmXUcmFEKy+vE5aV9XArwb315V6LY+jCGdwDpcQwA3U4Q4a0AQGEp7hFd487b14797HsrXg5TOn8Afe5w/QW5Be</latexit><latexit sha1_base64="VpJz9kSKCHTdiRSPJH1G8K2sZOA=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EMGXAxjKCSZTkCHubSbJkd+/Y3QuEI7/CxkIRW3+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gobm1vbO8Xd0t7+weFR+fikZeJUM2yyWMT6MaIGBVfYtNwKfEw0UhkJbEfj27nfnqA2PFYPdppgKOlQ8QFn1DrpqTtBlulZL+iVK37VX4CskyAnFcjR6JW/uv2YpRKVZYIa0wn8xIYZ1ZYzgbNSNzWYUDamQ+w4qqhEE2aLg2fkwil9Moi1K2XJQv09kVFpzFRGrlNSOzKr3lz8z+ukdlALM66S1KJiy0WDVBAbk/n3pM81MiumjlCmubuVsBHVlFmXUcmFEKy+vE5aV9XArwb315V6LY+jCGdwDpcQwA3U4Q4a0AQGEp7hFd487b14797HsrXg5TOn8Afe5w/QW5Be</latexit><latexit sha1_base64="VpJz9kSKCHTdiRSPJH1G8K2sZOA=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EMGXAxjKCSZTkCHubSbJkd+/Y3QuEI7/CxkIRW3+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gobm1vbO8Xd0t7+weFR+fikZeJUM2yyWMT6MaIGBVfYtNwKfEw0UhkJbEfj27nfnqA2PFYPdppgKOlQ8QFn1DrpqTtBlulZL+iVK37VX4CskyAnFcjR6JW/uv2YpRKVZYIa0wn8xIYZ1ZYzgbNSNzWYUDamQ+w4qqhEE2aLg2fkwil9Moi1K2XJQv09kVFpzFRGrlNSOzKr3lz8z+ukdlALM66S1KJiy0WDVBAbk/n3pM81MiumjlCmubuVsBHVlFmXUcmFEKy+vE5aV9XArwb315V6LY+jCGdwDpcQwA3U4Q4a0AQGEp7hFd487b14797HsrXg5TOn8Afe5w/QW5Be</latexit><latexit sha1_base64="VpJz9kSKCHTdiRSPJH1G8K2sZOA=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EMGXAxjKCSZTkCHubSbJkd+/Y3QuEI7/CxkIRW3+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gobm1vbO8Xd0t7+weFR+fikZeJUM2yyWMT6MaIGBVfYtNwKfEw0UhkJbEfj27nfnqA2PFYPdppgKOlQ8QFn1DrpqTtBlulZL+iVK37VX4CskyAnFcjR6JW/uv2YpRKVZYIa0wn8xIYZ1ZYzgbNSNzWYUDamQ+w4qqhEE2aLg2fkwil9Moi1K2XJQv09kVFpzFRGrlNSOzKr3lz8z+ukdlALM66S1KJiy0WDVBAbk/n3pM81MiumjlCmubuVsBHVlFmXUcmFEKy+vE5aV9XArwb315V6LY+jCGdwDpcQwA3U4Q4a0AQGEp7hFd487b14797HsrXg5TOn8Afe5w/QW5Be</latexit>

~r2
<latexit sha1_base64="7Af5aNx0ApMkAHsQXdbCv+pAG9k=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKYI8FLx4r2A9pQ9lsJ+3SzSbsbgol9Fd48aCIV3+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1FjpqT9Flqn5oDYoV9yquwTZJF5OKpCjOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5L/VRjQtmEjrBnqaQRaj9bHjwnV1YZkjBWtqQhS/X3REYjrWdRYDsjasZ63VuI/3m91IR1P+MySQ1KtloUpoKYmCy+J0OukBkxs4Qyxe2thI2poszYjEo2BG/95U3SrlU9t+o93FQa9TyOIlzAJVyDB7fQgHtoQgsYRPAMr/DmKOfFeXc+Vq0FJ585hz9wPn8A0d+QXw==</latexit><latexit sha1_base64="7Af5aNx0ApMkAHsQXdbCv+pAG9k=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKYI8FLx4r2A9pQ9lsJ+3SzSbsbgol9Fd48aCIV3+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1FjpqT9Flqn5oDYoV9yquwTZJF5OKpCjOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5L/VRjQtmEjrBnqaQRaj9bHjwnV1YZkjBWtqQhS/X3REYjrWdRYDsjasZ63VuI/3m91IR1P+MySQ1KtloUpoKYmCy+J0OukBkxs4Qyxe2thI2poszYjEo2BG/95U3SrlU9t+o93FQa9TyOIlzAJVyDB7fQgHtoQgsYRPAMr/DmKOfFeXc+Vq0FJ585hz9wPn8A0d+QXw==</latexit><latexit sha1_base64="7Af5aNx0ApMkAHsQXdbCv+pAG9k=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKYI8FLx4r2A9pQ9lsJ+3SzSbsbgol9Fd48aCIV3+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1FjpqT9Flqn5oDYoV9yquwTZJF5OKpCjOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5L/VRjQtmEjrBnqaQRaj9bHjwnV1YZkjBWtqQhS/X3REYjrWdRYDsjasZ63VuI/3m91IR1P+MySQ1KtloUpoKYmCy+J0OukBkxs4Qyxe2thI2poszYjEo2BG/95U3SrlU9t+o93FQa9TyOIlzAJVyDB7fQgHtoQgsYRPAMr/DmKOfFeXc+Vq0FJ585hz9wPn8A0d+QXw==</latexit><latexit sha1_base64="7Af5aNx0ApMkAHsQXdbCv+pAG9k=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKYI8FLx4r2A9pQ9lsJ+3SzSbsbgol9Fd48aCIV3+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1FjpqT9Flqn5oDYoV9yquwTZJF5OKpCjOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5L/VRjQtmEjrBnqaQRaj9bHjwnV1YZkjBWtqQhS/X3REYjrWdRYDsjasZ63VuI/3m91IR1P+MySQ1KtloUpoKYmCy+J0OukBkxs4Qyxe2thI2poszYjEo2BG/95U3SrlU9t+o93FQa9TyOIlzAJVyDB7fQgHtoQgsYRPAMr/DmKOfFeXc+Vq0FJ585hz9wPn8A0d+QXw==</latexit>

x
<latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit>

x
<latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit>

~r1B
<latexit sha1_base64="1lm7yK0JsIahzPQ48bwMb3HE7eo=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeiF48VbC00oWy2k3bpZhN2N4US+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fiko5NMMWyzRCSqG1KNgktsG24EdlOFNA4FPoXju7n/NEGleSIfzTTFIKZDySPOqLGS70+Q5WrWz73bWb9ac+vuAmSdeAWpQYFWv/rlDxKWxSgNE1TrnuemJsipMpwJnFX8TGNK2ZgOsWeppDHqIF/cPCMXVhmQKFG2pCEL9fdETmOtp3FoO2NqRnrVm4v/eb3MRI0g5zLNDEq2XBRlgpiEzAMgA66QGTG1hDLF7a2EjaiizNiYKjYEb/XlddK5qntu3Xu4rjUbRRxlOINzuAQPbqAJ99CCNjBI4Rle4c3JnBfn3flYtpacYuYU/sD5/AEnkJG2</latexit><latexit sha1_base64="1lm7yK0JsIahzPQ48bwMb3HE7eo=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeiF48VbC00oWy2k3bpZhN2N4US+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fiko5NMMWyzRCSqG1KNgktsG24EdlOFNA4FPoXju7n/NEGleSIfzTTFIKZDySPOqLGS70+Q5WrWz73bWb9ac+vuAmSdeAWpQYFWv/rlDxKWxSgNE1TrnuemJsipMpwJnFX8TGNK2ZgOsWeppDHqIF/cPCMXVhmQKFG2pCEL9fdETmOtp3FoO2NqRnrVm4v/eb3MRI0g5zLNDEq2XBRlgpiEzAMgA66QGTG1hDLF7a2EjaiizNiYKjYEb/XlddK5qntu3Xu4rjUbRRxlOINzuAQPbqAJ99CCNjBI4Rle4c3JnBfn3flYtpacYuYU/sD5/AEnkJG2</latexit><latexit sha1_base64="1lm7yK0JsIahzPQ48bwMb3HE7eo=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeiF48VbC00oWy2k3bpZhN2N4US+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fiko5NMMWyzRCSqG1KNgktsG24EdlOFNA4FPoXju7n/NEGleSIfzTTFIKZDySPOqLGS70+Q5WrWz73bWb9ac+vuAmSdeAWpQYFWv/rlDxKWxSgNE1TrnuemJsipMpwJnFX8TGNK2ZgOsWeppDHqIF/cPCMXVhmQKFG2pCEL9fdETmOtp3FoO2NqRnrVm4v/eb3MRI0g5zLNDEq2XBRlgpiEzAMgA66QGTG1hDLF7a2EjaiizNiYKjYEb/XlddK5qntu3Xu4rjUbRRxlOINzuAQPbqAJ99CCNjBI4Rle4c3JnBfn3flYtpacYuYU/sD5/AEnkJG2</latexit><latexit sha1_base64="1lm7yK0JsIahzPQ48bwMb3HE7eo=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeiF48VbC00oWy2k3bpZhN2N4US+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fiko5NMMWyzRCSqG1KNgktsG24EdlOFNA4FPoXju7n/NEGleSIfzTTFIKZDySPOqLGS70+Q5WrWz73bWb9ac+vuAmSdeAWpQYFWv/rlDxKWxSgNE1TrnuemJsipMpwJnFX8TGNK2ZgOsWeppDHqIF/cPCMXVhmQKFG2pCEL9fdETmOtp3FoO2NqRnrVm4v/eb3MRI0g5zLNDEq2XBRlgpiEzAMgA66QGTG1hDLF7a2EjaiizNiYKjYEb/XlddK5qntu3Xu4rjUbRRxlOINzuAQPbqAJ99CCNjBI4Rle4c3JnBfn3flYtpacYuYU/sD5/AEnkJG2</latexit>

~r2B
<latexit sha1_base64="a/x8GkvJhparWu5beB0uD7dOjF8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSRFsMeiF48V7Ac0oWy2k3bpZhN2N4US8je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IOFMacf5tkpb2zu7e+X9ysHh0fFJ9fSsq+JUUuzQmMeyHxCFnAnsaKY59hOJJAo49oLp/cLvzVAqFosnPU/Qj8hYsJBRoo3keTOkmcyHWeMuH1ZrTt1Zwt4kbkFqUKA9rH55o5imEQpNOVFq4DqJ9jMiNaMc84qXKkwInZIxDgwVJELlZ8ubc/vKKCM7jKUpoe2l+nsiI5FS8ygwnRHRE7XuLcT/vEGqw6afMZGkGgVdLQpTbuvYXgRgj5hEqvncEEIlM7fadEIkodrEVDEhuOsvb5Juo+46dffxptZqFnGU4QIu4RpcuIUWPEAbOkAhgWd4hTcrtV6sd+tj1Vqyiplz+APr8wcpFpG3</latexit><latexit sha1_base64="a/x8GkvJhparWu5beB0uD7dOjF8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSRFsMeiF48V7Ac0oWy2k3bpZhN2N4US8je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IOFMacf5tkpb2zu7e+X9ysHh0fFJ9fSsq+JUUuzQmMeyHxCFnAnsaKY59hOJJAo49oLp/cLvzVAqFosnPU/Qj8hYsJBRoo3keTOkmcyHWeMuH1ZrTt1Zwt4kbkFqUKA9rH55o5imEQpNOVFq4DqJ9jMiNaMc84qXKkwInZIxDgwVJELlZ8ubc/vKKCM7jKUpoe2l+nsiI5FS8ygwnRHRE7XuLcT/vEGqw6afMZGkGgVdLQpTbuvYXgRgj5hEqvncEEIlM7fadEIkodrEVDEhuOsvb5Juo+46dffxptZqFnGU4QIu4RpcuIUWPEAbOkAhgWd4hTcrtV6sd+tj1Vqyiplz+APr8wcpFpG3</latexit><latexit sha1_base64="a/x8GkvJhparWu5beB0uD7dOjF8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSRFsMeiF48V7Ac0oWy2k3bpZhN2N4US8je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IOFMacf5tkpb2zu7e+X9ysHh0fFJ9fSsq+JUUuzQmMeyHxCFnAnsaKY59hOJJAo49oLp/cLvzVAqFosnPU/Qj8hYsJBRoo3keTOkmcyHWeMuH1ZrTt1Zwt4kbkFqUKA9rH55o5imEQpNOVFq4DqJ9jMiNaMc84qXKkwInZIxDgwVJELlZ8ubc/vKKCM7jKUpoe2l+nsiI5FS8ygwnRHRE7XuLcT/vEGqw6afMZGkGgVdLQpTbuvYXgRgj5hEqvncEEIlM7fadEIkodrEVDEhuOsvb5Juo+46dffxptZqFnGU4QIu4RpcuIUWPEAbOkAhgWd4hTcrtV6sd+tj1Vqyiplz+APr8wcpFpG3</latexit><latexit sha1_base64="a/x8GkvJhparWu5beB0uD7dOjF8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSRFsMeiF48V7Ac0oWy2k3bpZhN2N4US8je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IOFMacf5tkpb2zu7e+X9ysHh0fFJ9fSsq+JUUuzQmMeyHxCFnAnsaKY59hOJJAo49oLp/cLvzVAqFosnPU/Qj8hYsJBRoo3keTOkmcyHWeMuH1ZrTt1Zwt4kbkFqUKA9rH55o5imEQpNOVFq4DqJ9jMiNaMc84qXKkwInZIxDgwVJELlZ8ubc/vKKCM7jKUpoe2l+nsiI5FS8ygwnRHRE7XuLcT/vEGqw6afMZGkGgVdLQpTbuvYXgRgj5hEqvncEEIlM7fadEIkodrEVDEhuOsvb5Juo+46dffxptZqFnGU4QIu4RpcuIUWPEAbOkAhgWd4hTcrtV6sd+tj1Vqyiplz+APr8wcpFpG3</latexit>

Fig. 4.35 A horseshoe vortex.

✓1
<latexit sha1_base64="Q0shDWIckda9b/NanUy8OsXQGfg=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKYI4BLx4jmAckS5iddJIhsw9neoWw5Ce8eFDEq7/jzb9xkuxBEwsaiqpuuruCRElDrvvtFDY2t7Z3irulvf2Dw6Py8UnLxKkW2BSxinUn4AaVjLBJkhR2Eo08DBS2g8nt3G8/oTYyjh5omqAf8lEkh1JwslKnR2Mk3vf65YpbdRdg68TLSQVyNPrlr94gFmmIEQnFjel6bkJ+xjVJoXBW6qUGEy4mfIRdSyMeovGzxb0zdmGVARvG2lZEbKH+nsh4aMw0DGxnyGlsVr25+J/XTWlY8zMZJSlhJJaLhqliFLP582wgNQpSU0u40NLeysSYay7IRlSyIXirL6+T1lXVc6ve/XWlXsvjKMIZnMMleHADdbiDBjRBgIJneIU359F5cd6dj2VrwclnTuEPnM8fymWPwg==</latexit><latexit sha1_base64="Q0shDWIckda9b/NanUy8OsXQGfg=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKYI4BLx4jmAckS5iddJIhsw9neoWw5Ce8eFDEq7/jzb9xkuxBEwsaiqpuuruCRElDrvvtFDY2t7Z3irulvf2Dw6Py8UnLxKkW2BSxinUn4AaVjLBJkhR2Eo08DBS2g8nt3G8/oTYyjh5omqAf8lEkh1JwslKnR2Mk3vf65YpbdRdg68TLSQVyNPrlr94gFmmIEQnFjel6bkJ+xjVJoXBW6qUGEy4mfIRdSyMeovGzxb0zdmGVARvG2lZEbKH+nsh4aMw0DGxnyGlsVr25+J/XTWlY8zMZJSlhJJaLhqliFLP582wgNQpSU0u40NLeysSYay7IRlSyIXirL6+T1lXVc6ve/XWlXsvjKMIZnMMleHADdbiDBjRBgIJneIU359F5cd6dj2VrwclnTuEPnM8fymWPwg==</latexit><latexit sha1_base64="Q0shDWIckda9b/NanUy8OsXQGfg=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKYI4BLx4jmAckS5iddJIhsw9neoWw5Ce8eFDEq7/jzb9xkuxBEwsaiqpuuruCRElDrvvtFDY2t7Z3irulvf2Dw6Py8UnLxKkW2BSxinUn4AaVjLBJkhR2Eo08DBS2g8nt3G8/oTYyjh5omqAf8lEkh1JwslKnR2Mk3vf65YpbdRdg68TLSQVyNPrlr94gFmmIEQnFjel6bkJ+xjVJoXBW6qUGEy4mfIRdSyMeovGzxb0zdmGVARvG2lZEbKH+nsh4aMw0DGxnyGlsVr25+J/XTWlY8zMZJSlhJJaLhqliFLP582wgNQpSU0u40NLeysSYay7IRlSyIXirL6+T1lXVc6ve/XWlXsvjKMIZnMMleHADdbiDBjRBgIJneIU359F5cd6dj2VrwclnTuEPnM8fymWPwg==</latexit><latexit sha1_base64="Q0shDWIckda9b/NanUy8OsXQGfg=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKYI4BLx4jmAckS5iddJIhsw9neoWw5Ce8eFDEq7/jzb9xkuxBEwsaiqpuuruCRElDrvvtFDY2t7Z3irulvf2Dw6Py8UnLxKkW2BSxinUn4AaVjLBJkhR2Eo08DBS2g8nt3G8/oTYyjh5omqAf8lEkh1JwslKnR2Mk3vf65YpbdRdg68TLSQVyNPrlr94gFmmIEQnFjel6bkJ+xjVJoXBW6qUGEy4mfIRdSyMeovGzxb0zdmGVARvG2lZEbKH+nsh4aMw0DGxnyGlsVr25+J/XTWlY8zMZJSlhJJaLhqliFLP582wgNQpSU0u40NLeysSYay7IRlSyIXirL6+T1lXVc6ve/XWlXsvjKMIZnMMleHADdbiDBjRBgIJneIU359F5cd6dj2VrwclnTuEPnM8fymWPwg==</latexit>

✓2
<latexit sha1_base64="6aWhDv6vGWEQiF8KTe5dkHMp+dw=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8laQI9ljw4rGC/YA2lM122i7dbOLuRCihf8KLB0W8+ne8+W/ctjlo64OBx3szzMwLEykMed63s7G5tb2zW9gr7h8cHh2XTk5bJk41xyaPZaw7ITMohcImCZLYSTSyKJTYDie3c7/9hNqIWD3QNMEgYiMlhoIzslKnR2Mk1q/2S2Wv4i3grhM/J2XI0eiXvnqDmKcRKuKSGdP1vYSCjGkSXOKs2EsNJoxP2Ai7lioWoQmyxb0z99IqA3cYa1uK3IX6eyJjkTHTKLSdEaOxWfXm4n9eN6VhLciESlJCxZeLhql0KXbnz7sDoZGTnFrCuBb2VpePmWacbERFG4K/+vI6aVUrvlfx76/L9VoeRwHO4QKuwIcbqMMdNKAJHCQ8wyu8OY/Oi/PufCxbN5x85gz+wPn8Acvpj8M=</latexit><latexit sha1_base64="6aWhDv6vGWEQiF8KTe5dkHMp+dw=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8laQI9ljw4rGC/YA2lM122i7dbOLuRCihf8KLB0W8+ne8+W/ctjlo64OBx3szzMwLEykMed63s7G5tb2zW9gr7h8cHh2XTk5bJk41xyaPZaw7ITMohcImCZLYSTSyKJTYDie3c7/9hNqIWD3QNMEgYiMlhoIzslKnR2Mk1q/2S2Wv4i3grhM/J2XI0eiXvnqDmKcRKuKSGdP1vYSCjGkSXOKs2EsNJoxP2Ai7lioWoQmyxb0z99IqA3cYa1uK3IX6eyJjkTHTKLSdEaOxWfXm4n9eN6VhLciESlJCxZeLhql0KXbnz7sDoZGTnFrCuBb2VpePmWacbERFG4K/+vI6aVUrvlfx76/L9VoeRwHO4QKuwIcbqMMdNKAJHCQ8wyu8OY/Oi/PufCxbN5x85gz+wPn8Acvpj8M=</latexit><latexit sha1_base64="6aWhDv6vGWEQiF8KTe5dkHMp+dw=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8laQI9ljw4rGC/YA2lM122i7dbOLuRCihf8KLB0W8+ne8+W/ctjlo64OBx3szzMwLEykMed63s7G5tb2zW9gr7h8cHh2XTk5bJk41xyaPZaw7ITMohcImCZLYSTSyKJTYDie3c7/9hNqIWD3QNMEgYiMlhoIzslKnR2Mk1q/2S2Wv4i3grhM/J2XI0eiXvnqDmKcRKuKSGdP1vYSCjGkSXOKs2EsNJoxP2Ai7lioWoQmyxb0z99IqA3cYa1uK3IX6eyJjkTHTKLSdEaOxWfXm4n9eN6VhLciESlJCxZeLhql0KXbnz7sDoZGTnFrCuBb2VpePmWacbERFG4K/+vI6aVUrvlfx76/L9VoeRwHO4QKuwIcbqMMdNKAJHCQ8wyu8OY/Oi/PufCxbN5x85gz+wPn8Acvpj8M=</latexit><latexit sha1_base64="6aWhDv6vGWEQiF8KTe5dkHMp+dw=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8laQI9ljw4rGC/YA2lM122i7dbOLuRCihf8KLB0W8+ne8+W/ctjlo64OBx3szzMwLEykMed63s7G5tb2zW9gr7h8cHh2XTk5bJk41xyaPZaw7ITMohcImCZLYSTSyKJTYDie3c7/9hNqIWD3QNMEgYiMlhoIzslKnR2Mk1q/2S2Wv4i3grhM/J2XI0eiXvnqDmKcRKuKSGdP1vYSCjGkSXOKs2EsNJoxP2Ai7lioWoQmyxb0z99IqA3cYa1uK3IX6eyJjkTHTKLSdEaOxWfXm4n9eN6VhLciESlJCxZeLhql0KXbnz7sDoZGTnFrCuBb2VpePmWacbERFG4K/+vI6aVUrvlfx76/L9VoeRwHO4QKuwIcbqMMdNKAJHCQ8wyu8OY/Oi/PufCxbN5x85gz+wPn8Acvpj8M=</latexit>

dl
<latexit sha1_base64="cIS+YKcWF/OwhP5ZsKrqtC9yxPk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF49V7Ae0oWw2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6hGwSW2DTcCe6lCGgcCu8Hkdu53n1BpnshHM03Rj+lI8ogzaqz0EIphtebW3QXIOvEKUoMCrWH1axAmLItRGiao1n3PTY2fU2U4EzirDDKNKWUTOsK+pZLGqP18cemMXFglJFGibElDFurviZzGWk/jwHbG1Iz1qjcX//P6mYkafs5lmhmUbLkoygQxCZm/TUKukBkxtYQyxe2thI2poszYcCo2BG/15XXSuap7bt27v641G0UcZTiDc7gED26gCXfQgjYwiOAZXuHNmTgvzrvzsWwtOcXMKfyB8/kDje6NVA==</latexit><latexit sha1_base64="cIS+YKcWF/OwhP5ZsKrqtC9yxPk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF49V7Ae0oWw2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6hGwSW2DTcCe6lCGgcCu8Hkdu53n1BpnshHM03Rj+lI8ogzaqz0EIphtebW3QXIOvEKUoMCrWH1axAmLItRGiao1n3PTY2fU2U4EzirDDKNKWUTOsK+pZLGqP18cemMXFglJFGibElDFurviZzGWk/jwHbG1Iz1qjcX//P6mYkafs5lmhmUbLkoygQxCZm/TUKukBkxtYQyxe2thI2poszYcCo2BG/15XXSuap7bt27v641G0UcZTiDc7gED26gCXfQgjYwiOAZXuHNmTgvzrvzsWwtOcXMKfyB8/kDje6NVA==</latexit><latexit sha1_base64="cIS+YKcWF/OwhP5ZsKrqtC9yxPk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF49V7Ae0oWw2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6hGwSW2DTcCe6lCGgcCu8Hkdu53n1BpnshHM03Rj+lI8ogzaqz0EIphtebW3QXIOvEKUoMCrWH1axAmLItRGiao1n3PTY2fU2U4EzirDDKNKWUTOsK+pZLGqP18cemMXFglJFGibElDFurviZzGWk/jwHbG1Iz1qjcX//P6mYkafs5lmhmUbLkoygQxCZm/TUKukBkxtYQyxe2thI2poszYcCo2BG/15XXSuap7bt27v641G0UcZTiDc7gED26gCXfQgjYwiOAZXuHNmTgvzrvzsWwtOcXMKfyB8/kDje6NVA==</latexit><latexit sha1_base64="cIS+YKcWF/OwhP5ZsKrqtC9yxPk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF49V7Ae0oWw2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6hGwSW2DTcCe6lCGgcCu8Hkdu53n1BpnshHM03Rj+lI8ogzaqz0EIphtebW3QXIOvEKUoMCrWH1axAmLItRGiao1n3PTY2fU2U4EzirDDKNKWUTOsK+pZLGqP18cemMXFglJFGibElDFurviZzGWk/jwHbG1Iz1qjcX//P6mYkafs5lmhmUbLkoygQxCZm/TUKukBkxtYQyxe2thI2poszYcCo2BG/15XXSuap7bt27v641G0UcZTiDc7gED26gCXfQgjYwiOAZXuHNmTgvzrvzsWwtOcXMKfyB8/kDje6NVA==</latexit>

r
<latexit sha1_base64="t/pT92dHPcUSqbzT5hE9+RmxEJI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSw3LFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NWHdz7hMUoOSrRaFqSAmJouvyYgrZEbMLKFMcXsrYROqKDM2m5INwVt/eZN0bqqeW/Vat5VGPY+jCBdwCdfgQQ0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/aH4zs</latexit><latexit sha1_base64="t/pT92dHPcUSqbzT5hE9+RmxEJI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSw3LFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NWHdz7hMUoOSrRaFqSAmJouvyYgrZEbMLKFMcXsrYROqKDM2m5INwVt/eZN0bqqeW/Vat5VGPY+jCBdwCdfgQQ0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/aH4zs</latexit><latexit sha1_base64="t/pT92dHPcUSqbzT5hE9+RmxEJI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSw3LFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NWHdz7hMUoOSrRaFqSAmJouvyYgrZEbMLKFMcXsrYROqKDM2m5INwVt/eZN0bqqeW/Vat5VGPY+jCBdwCdfgQQ0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/aH4zs</latexit><latexit sha1_base64="t/pT92dHPcUSqbzT5hE9+RmxEJI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSw3LFbfqLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NWHdz7hMUoOSrRaFqSAmJouvyYgrZEbMLKFMcXsrYROqKDM2m5INwVt/eZN0bqqeW/Vat5VGPY+jCBdwCdfgQQ0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/aH4zs</latexit>

h
<latexit sha1_base64="tznJ5l2ae4xkmpo8iX0nAmXub7k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSazIsV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VYa9TyOIlzAJVyDBzVowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AyveM4g==</latexit><latexit sha1_base64="tznJ5l2ae4xkmpo8iX0nAmXub7k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSazIsV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VYa9TyOIlzAJVyDBzVowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AyveM4g==</latexit><latexit sha1_base64="tznJ5l2ae4xkmpo8iX0nAmXub7k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSazIsV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VYa9TyOIlzAJVyDBzVowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AyveM4g==</latexit><latexit sha1_base64="tznJ5l2ae4xkmpo8iX0nAmXub7k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSazIsV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VYa9TyOIlzAJVyDBzVowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AyveM4g==</latexit>

✓
<latexit sha1_base64="uASEump3d8H+KrkJ7Q9t1+uECus=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKYI4BLx4jmAckS5id9CZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZDk2upTadiFmQQkETBUropAZYEkloR+Pbud9+AmOFVg84SSFM2FCJWHCGTmr1cATI+uWKX/UXoOskyEmF5Gj0y1+9geZZAgq5ZNZ2Az/FcMoMCi5hVuplFlLGx2wIXUcVS8CG08W1M3rhlAGNtXGlkC7U3xNTllg7SSLXmTAc2VVvLv7ndTOMa+FUqDRDUHy5KM4kRU3nr9OBMMBRThxh3Ah3K+UjZhhHF1DJhRCsvrxOWlfVwK8G99eVei2Po0jOyDm5JAG5IXVyRxqkSTh5JM/klbx52nvx3r2PZWvBy2dOyR94nz+g9Y8e</latexit><latexit sha1_base64="uASEump3d8H+KrkJ7Q9t1+uECus=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKYI4BLx4jmAckS5id9CZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZDk2upTadiFmQQkETBUropAZYEkloR+Pbud9+AmOFVg84SSFM2FCJWHCGTmr1cATI+uWKX/UXoOskyEmF5Gj0y1+9geZZAgq5ZNZ2Az/FcMoMCi5hVuplFlLGx2wIXUcVS8CG08W1M3rhlAGNtXGlkC7U3xNTllg7SSLXmTAc2VVvLv7ndTOMa+FUqDRDUHy5KM4kRU3nr9OBMMBRThxh3Ah3K+UjZhhHF1DJhRCsvrxOWlfVwK8G99eVei2Po0jOyDm5JAG5IXVyRxqkSTh5JM/klbx52nvx3r2PZWvBy2dOyR94nz+g9Y8e</latexit><latexit sha1_base64="uASEump3d8H+KrkJ7Q9t1+uECus=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKYI4BLx4jmAckS5id9CZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZDk2upTadiFmQQkETBUropAZYEkloR+Pbud9+AmOFVg84SSFM2FCJWHCGTmr1cATI+uWKX/UXoOskyEmF5Gj0y1+9geZZAgq5ZNZ2Az/FcMoMCi5hVuplFlLGx2wIXUcVS8CG08W1M3rhlAGNtXGlkC7U3xNTllg7SSLXmTAc2VVvLv7ndTOMa+FUqDRDUHy5KM4kRU3nr9OBMMBRThxh3Ah3K+UjZhhHF1DJhRCsvrxOWlfVwK8G99eVei2Po0jOyDm5JAG5IXVyRxqkSTh5JM/klbx52nvx3r2PZWvBy2dOyR94nz+g9Y8e</latexit><latexit sha1_base64="uASEump3d8H+KrkJ7Q9t1+uECus=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKeyKYI4BLx4jmAckS5id9CZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vcLG5tb2TnG3tLd/cHhUPj5pWZ0ZDk2upTadiFmQQkETBUropAZYEkloR+Pbud9+AmOFVg84SSFM2FCJWHCGTmr1cATI+uWKX/UXoOskyEmF5Gj0y1+9geZZAgq5ZNZ2Az/FcMoMCi5hVuplFlLGx2wIXUcVS8CG08W1M3rhlAGNtXGlkC7U3xNTllg7SSLXmTAc2VVvLv7ndTOMa+FUqDRDUHy5KM4kRU3nr9OBMMBRThxh3Ah3K+UjZhhHF1DJhRCsvrxOWlfVwK8G99eVei2Po0jOyDm5JAG5IXVyRxqkSTh5JM/klbx52nvx3r2PZWvBy2dOyR94nz+g9Y8e</latexit>

~r0
<latexit sha1_base64="Yqwm5QmKQWZs17E66DPxpjRm2G0=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EMGXAxjKCSZTkCHubSbJkd+/Y3QuEI7/CxkIRW3+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gobm1vbO8Xd0t7+weFR+fikZeJUM2yyWMT6MaIGBVfYtNwKfEw0UhkJbEfj27nfnqA2PFYPdppgKOlQ8QFn1DrpqTtBlulZz++VK37VX4CskyAnFcjR6JW/uv2YpRKVZYIa0wn8xIYZ1ZYzgbNSNzWYUDamQ+w4qqhEE2aLg2fkwil9Moi1K2XJQv09kVFpzFRGrlNSOzKr3lz8z+ukdlALM66S1KJiy0WDVBAbk/n3pM81MiumjlCmubuVsBHVlFmXUcmFEKy+vE5aV9XArwb315V6LY+jCGdwDpcQwA3U4Q4a0AQGEp7hFd487b14797HsrXg5TOn8Afe5w/O15Bd</latexit><latexit sha1_base64="Yqwm5QmKQWZs17E66DPxpjRm2G0=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EMGXAxjKCSZTkCHubSbJkd+/Y3QuEI7/CxkIRW3+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gobm1vbO8Xd0t7+weFR+fikZeJUM2yyWMT6MaIGBVfYtNwKfEw0UhkJbEfj27nfnqA2PFYPdppgKOlQ8QFn1DrpqTtBlulZz++VK37VX4CskyAnFcjR6JW/uv2YpRKVZYIa0wn8xIYZ1ZYzgbNSNzWYUDamQ+w4qqhEE2aLg2fkwil9Moi1K2XJQv09kVFpzFRGrlNSOzKr3lz8z+ukdlALM66S1KJiy0WDVBAbk/n3pM81MiumjlCmubuVsBHVlFmXUcmFEKy+vE5aV9XArwb315V6LY+jCGdwDpcQwA3U4Q4a0AQGEp7hFd487b14797HsrXg5TOn8Afe5w/O15Bd</latexit><latexit sha1_base64="Yqwm5QmKQWZs17E66DPxpjRm2G0=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EMGXAxjKCSZTkCHubSbJkd+/Y3QuEI7/CxkIRW3+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gobm1vbO8Xd0t7+weFR+fikZeJUM2yyWMT6MaIGBVfYtNwKfEw0UhkJbEfj27nfnqA2PFYPdppgKOlQ8QFn1DrpqTtBlulZz++VK37VX4CskyAnFcjR6JW/uv2YpRKVZYIa0wn8xIYZ1ZYzgbNSNzWYUDamQ+w4qqhEE2aLg2fkwil9Moi1K2XJQv09kVFpzFRGrlNSOzKr3lz8z+ukdlALM66S1KJiy0WDVBAbk/n3pM81MiumjlCmubuVsBHVlFmXUcmFEKy+vE5aV9XArwb315V6LY+jCGdwDpcQwA3U4Q4a0AQGEp7hFd487b14797HsrXg5TOn8Afe5w/O15Bd</latexit><latexit sha1_base64="Yqwm5QmKQWZs17E66DPxpjRm2G0=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EMGXAxjKCSZTkCHubSbJkd+/Y3QuEI7/CxkIRW3+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gobm1vbO8Xd0t7+weFR+fikZeJUM2yyWMT6MaIGBVfYtNwKfEw0UhkJbEfj27nfnqA2PFYPdppgKOlQ8QFn1DrpqTtBlulZz++VK37VX4CskyAnFcjR6JW/uv2YpRKVZYIa0wn8xIYZ1ZYzgbNSNzWYUDamQ+w4qqhEE2aLg2fkwil9Moi1K2XJQv09kVFpzFRGrlNSOzKr3lz8z+ukdlALM66S1KJiy0WDVBAbk/n3pM81MiumjlCmubuVsBHVlFmXUcmFEKy+vE5aV9XArwb315V6LY+jCGdwDpcQwA3U4Q4a0AQGEp7hFd487b14797HsrXg5TOn8Afe5w/O15Bd</latexit>

~r1
<latexit sha1_base64="VpJz9kSKCHTdiRSPJH1G8K2sZOA=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EMGXAxjKCSZTkCHubSbJkd+/Y3QuEI7/CxkIRW3+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gobm1vbO8Xd0t7+weFR+fikZeJUM2yyWMT6MaIGBVfYtNwKfEw0UhkJbEfj27nfnqA2PFYPdppgKOlQ8QFn1DrpqTtBlulZL+iVK37VX4CskyAnFcjR6JW/uv2YpRKVZYIa0wn8xIYZ1ZYzgbNSNzWYUDamQ+w4qqhEE2aLg2fkwil9Moi1K2XJQv09kVFpzFRGrlNSOzKr3lz8z+ukdlALM66S1KJiy0WDVBAbk/n3pM81MiumjlCmubuVsBHVlFmXUcmFEKy+vE5aV9XArwb315V6LY+jCGdwDpcQwA3U4Q4a0AQGEp7hFd487b14797HsrXg5TOn8Afe5w/QW5Be</latexit><latexit sha1_base64="VpJz9kSKCHTdiRSPJH1G8K2sZOA=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EMGXAxjKCSZTkCHubSbJkd+/Y3QuEI7/CxkIRW3+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gobm1vbO8Xd0t7+weFR+fikZeJUM2yyWMT6MaIGBVfYtNwKfEw0UhkJbEfj27nfnqA2PFYPdppgKOlQ8QFn1DrpqTtBlulZL+iVK37VX4CskyAnFcjR6JW/uv2YpRKVZYIa0wn8xIYZ1ZYzgbNSNzWYUDamQ+w4qqhEE2aLg2fkwil9Moi1K2XJQv09kVFpzFRGrlNSOzKr3lz8z+ukdlALM66S1KJiy0WDVBAbk/n3pM81MiumjlCmubuVsBHVlFmXUcmFEKy+vE5aV9XArwb315V6LY+jCGdwDpcQwA3U4Q4a0AQGEp7hFd487b14797HsrXg5TOn8Afe5w/QW5Be</latexit><latexit sha1_base64="VpJz9kSKCHTdiRSPJH1G8K2sZOA=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EMGXAxjKCSZTkCHubSbJkd+/Y3QuEI7/CxkIRW3+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gobm1vbO8Xd0t7+weFR+fikZeJUM2yyWMT6MaIGBVfYtNwKfEw0UhkJbEfj27nfnqA2PFYPdppgKOlQ8QFn1DrpqTtBlulZL+iVK37VX4CskyAnFcjR6JW/uv2YpRKVZYIa0wn8xIYZ1ZYzgbNSNzWYUDamQ+w4qqhEE2aLg2fkwil9Moi1K2XJQv09kVFpzFRGrlNSOzKr3lz8z+ukdlALM66S1KJiy0WDVBAbk/n3pM81MiumjlCmubuVsBHVlFmXUcmFEKy+vE5aV9XArwb315V6LY+jCGdwDpcQwA3U4Q4a0AQGEp7hFd487b14797HsrXg5TOn8Afe5w/QW5Be</latexit><latexit sha1_base64="VpJz9kSKCHTdiRSPJH1G8K2sZOA=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EMGXAxjKCSZTkCHubSbJkd+/Y3QuEI7/CxkIRW3+Onf/GTXKFJj4YeLw3w8y8KBHcWN//9gobm1vbO8Xd0t7+weFR+fikZeJUM2yyWMT6MaIGBVfYtNwKfEw0UhkJbEfj27nfnqA2PFYPdppgKOlQ8QFn1DrpqTtBlulZL+iVK37VX4CskyAnFcjR6JW/uv2YpRKVZYIa0wn8xIYZ1ZYzgbNSNzWYUDamQ+w4qqhEE2aLg2fkwil9Moi1K2XJQv09kVFpzFRGrlNSOzKr3lz8z+ukdlALM66S1KJiy0WDVBAbk/n3pM81MiumjlCmubuVsBHVlFmXUcmFEKy+vE5aV9XArwb315V6LY+jCGdwDpcQwA3U4Q4a0AQGEp7hFd487b14797HsrXg5TOn8Afe5w/QW5Be</latexit>

~r2
<latexit sha1_base64="7Af5aNx0ApMkAHsQXdbCv+pAG9k=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKYI8FLx4r2A9pQ9lsJ+3SzSbsbgol9Fd48aCIV3+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1FjpqT9Flqn5oDYoV9yquwTZJF5OKpCjOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5L/VRjQtmEjrBnqaQRaj9bHjwnV1YZkjBWtqQhS/X3REYjrWdRYDsjasZ63VuI/3m91IR1P+MySQ1KtloUpoKYmCy+J0OukBkxs4Qyxe2thI2poszYjEo2BG/95U3SrlU9t+o93FQa9TyOIlzAJVyDB7fQgHtoQgsYRPAMr/DmKOfFeXc+Vq0FJ585hz9wPn8A0d+QXw==</latexit><latexit sha1_base64="7Af5aNx0ApMkAHsQXdbCv+pAG9k=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKYI8FLx4r2A9pQ9lsJ+3SzSbsbgol9Fd48aCIV3+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1FjpqT9Flqn5oDYoV9yquwTZJF5OKpCjOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5L/VRjQtmEjrBnqaQRaj9bHjwnV1YZkjBWtqQhS/X3REYjrWdRYDsjasZ63VuI/3m91IR1P+MySQ1KtloUpoKYmCy+J0OukBkxs4Qyxe2thI2poszYjEo2BG/95U3SrlU9t+o93FQa9TyOIlzAJVyDB7fQgHtoQgsYRPAMr/DmKOfFeXc+Vq0FJ585hz9wPn8A0d+QXw==</latexit><latexit sha1_base64="7Af5aNx0ApMkAHsQXdbCv+pAG9k=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKYI8FLx4r2A9pQ9lsJ+3SzSbsbgol9Fd48aCIV3+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1FjpqT9Flqn5oDYoV9yquwTZJF5OKpCjOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5L/VRjQtmEjrBnqaQRaj9bHjwnV1YZkjBWtqQhS/X3REYjrWdRYDsjasZ63VuI/3m91IR1P+MySQ1KtloUpoKYmCy+J0OukBkxs4Qyxe2thI2poszYjEo2BG/95U3SrlU9t+o93FQa9TyOIlzAJVyDB7fQgHtoQgsYRPAMr/DmKOfFeXc+Vq0FJ585hz9wPn8A0d+QXw==</latexit><latexit sha1_base64="7Af5aNx0ApMkAHsQXdbCv+pAG9k=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKYI8FLx4r2A9pQ9lsJ+3SzSbsbgol9Fd48aCIV3+ON/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTu4XfmaLSPJaPZpagH9GR5CFn1FjpqT9Flqn5oDYoV9yquwTZJF5OKpCjOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5L/VRjQtmEjrBnqaQRaj9bHjwnV1YZkjBWtqQhS/X3REYjrWdRYDsjasZ63VuI/3m91IR1P+MySQ1KtloUpoKYmCy+J0OukBkxs4Qyxe2thI2poszYjEo2BG/95U3SrlU9t+o93FQa9TyOIlzAJVyDB7fQgHtoQgsYRPAMr/DmKOfFeXc+Vq0FJ585hz9wPn8A0d+QXw==</latexit>

x
<latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit>

x
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Fig. 4.36 Contribution of bound vor-
tex induced velocity at the control
point.
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x
<latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit>

~r1R
<latexit sha1_base64="UPRf9lgKmla7oCE7oj5G5/r9V9U=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF49VbC00oWy2k3bpZhN2N4US+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fiko5NMMWyzRCSqG1KNgktsG24EdlOFNA4FPoXj27n/NEGleSIfzTTFIKZDySPOqLGS70+Q5WrWz72HWb9ac+vuAmSdeAWpQYFWv/rlDxKWxSgNE1TrnuemJsipMpwJnFX8TGNK2ZgOsWeppDHqIF/cPCMXVhmQKFG2pCEL9fdETmOtp3FoO2NqRnrVm4v/eb3MRI0g5zLNDEq2XBRlgpiEzAMgA66QGTG1hDLF7a2EjaiizNiYKjYEb/XlddK5qntu3bu/rjUbRRxlOINzuAQPbqAJd9CCNjBI4Rle4c3JnBfn3flYtpacYuYU/sD5/AE/4JHG</latexit><latexit sha1_base64="UPRf9lgKmla7oCE7oj5G5/r9V9U=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF49VbC00oWy2k3bpZhN2N4US+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fiko5NMMWyzRCSqG1KNgktsG24EdlOFNA4FPoXj27n/NEGleSIfzTTFIKZDySPOqLGS70+Q5WrWz72HWb9ac+vuAmSdeAWpQYFWv/rlDxKWxSgNE1TrnuemJsipMpwJnFX8TGNK2ZgOsWeppDHqIF/cPCMXVhmQKFG2pCEL9fdETmOtp3FoO2NqRnrVm4v/eb3MRI0g5zLNDEq2XBRlgpiEzAMgA66QGTG1hDLF7a2EjaiizNiYKjYEb/XlddK5qntu3bu/rjUbRRxlOINzuAQPbqAJd9CCNjBI4Rle4c3JnBfn3flYtpacYuYU/sD5/AE/4JHG</latexit><latexit sha1_base64="UPRf9lgKmla7oCE7oj5G5/r9V9U=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF49VbC00oWy2k3bpZhN2N4US+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fiko5NMMWyzRCSqG1KNgktsG24EdlOFNA4FPoXj27n/NEGleSIfzTTFIKZDySPOqLGS70+Q5WrWz72HWb9ac+vuAmSdeAWpQYFWv/rlDxKWxSgNE1TrnuemJsipMpwJnFX8TGNK2ZgOsWeppDHqIF/cPCMXVhmQKFG2pCEL9fdETmOtp3FoO2NqRnrVm4v/eb3MRI0g5zLNDEq2XBRlgpiEzAMgA66QGTG1hDLF7a2EjaiizNiYKjYEb/XlddK5qntu3bu/rjUbRRxlOINzuAQPbqAJd9CCNjBI4Rle4c3JnBfn3flYtpacYuYU/sD5/AE/4JHG</latexit><latexit sha1_base64="UPRf9lgKmla7oCE7oj5G5/r9V9U=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF49VbC00oWy2k3bpZhN2N4US+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fiko5NMMWyzRCSqG1KNgktsG24EdlOFNA4FPoXj27n/NEGleSIfzTTFIKZDySPOqLGS70+Q5WrWz72HWb9ac+vuAmSdeAWpQYFWv/rlDxKWxSgNE1TrnuemJsipMpwJnFX8TGNK2ZgOsWeppDHqIF/cPCMXVhmQKFG2pCEL9fdETmOtp3FoO2NqRnrVm4v/eb3MRI0g5zLNDEq2XBRlgpiEzAMgA66QGTG1hDLF7a2EjaiizNiYKjYEb/XlddK5qntu3bu/rjUbRRxlOINzuAQPbqAJd9CCNjBI4Rle4c3JnBfn3flYtpacYuYU/sD5/AE/4JHG</latexit>

~r2R
<latexit sha1_base64="BryMxPyLQnEMzRMOeK1zzsqWBZE=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSRFsMeCF49V7Ac0oWy2k3bpZhN2N4US8je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IOFMacf5tkpb2zu7e+X9ysHh0fFJ9fSsq+JUUuzQmMeyHxCFnAnsaKY59hOJJAo49oLp3cLvzVAqFosnPU/Qj8hYsJBRoo3keTOkmcyHWeMxH1ZrTt1Zwt4kbkFqUKA9rH55o5imEQpNOVFq4DqJ9jMiNaMc84qXKkwInZIxDgwVJELlZ8ubc/vKKCM7jKUpoe2l+nsiI5FS8ygwnRHRE7XuLcT/vEGqw6afMZGkGgVdLQpTbuvYXgRgj5hEqvncEEIlM7fadEIkodrEVDEhuOsvb5Juo+46dffhptZqFnGU4QIu4RpcuIUW3EMbOkAhgWd4hTcrtV6sd+tj1Vqyiplz+APr8wdBZpHH</latexit><latexit sha1_base64="BryMxPyLQnEMzRMOeK1zzsqWBZE=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSRFsMeCF49V7Ac0oWy2k3bpZhN2N4US8je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IOFMacf5tkpb2zu7e+X9ysHh0fFJ9fSsq+JUUuzQmMeyHxCFnAnsaKY59hOJJAo49oLp3cLvzVAqFosnPU/Qj8hYsJBRoo3keTOkmcyHWeMxH1ZrTt1Zwt4kbkFqUKA9rH55o5imEQpNOVFq4DqJ9jMiNaMc84qXKkwInZIxDgwVJELlZ8ubc/vKKCM7jKUpoe2l+nsiI5FS8ygwnRHRE7XuLcT/vEGqw6afMZGkGgVdLQpTbuvYXgRgj5hEqvncEEIlM7fadEIkodrEVDEhuOsvb5Juo+46dffhptZqFnGU4QIu4RpcuIUW3EMbOkAhgWd4hTcrtV6sd+tj1Vqyiplz+APr8wdBZpHH</latexit><latexit sha1_base64="BryMxPyLQnEMzRMOeK1zzsqWBZE=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSRFsMeCF49V7Ac0oWy2k3bpZhN2N4US8je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IOFMacf5tkpb2zu7e+X9ysHh0fFJ9fSsq+JUUuzQmMeyHxCFnAnsaKY59hOJJAo49oLp3cLvzVAqFosnPU/Qj8hYsJBRoo3keTOkmcyHWeMxH1ZrTt1Zwt4kbkFqUKA9rH55o5imEQpNOVFq4DqJ9jMiNaMc84qXKkwInZIxDgwVJELlZ8ubc/vKKCM7jKUpoe2l+nsiI5FS8ygwnRHRE7XuLcT/vEGqw6afMZGkGgVdLQpTbuvYXgRgj5hEqvncEEIlM7fadEIkodrEVDEhuOsvb5Juo+46dffhptZqFnGU4QIu4RpcuIUW3EMbOkAhgWd4hTcrtV6sd+tj1Vqyiplz+APr8wdBZpHH</latexit><latexit sha1_base64="BryMxPyLQnEMzRMOeK1zzsqWBZE=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSRFsMeCF49V7Ac0oWy2k3bpZhN2N4US8je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IOFMacf5tkpb2zu7e+X9ysHh0fFJ9fSsq+JUUuzQmMeyHxCFnAnsaKY59hOJJAo49oLp3cLvzVAqFosnPU/Qj8hYsJBRoo3keTOkmcyHWeMxH1ZrTt1Zwt4kbkFqUKA9rH55o5imEQpNOVFq4DqJ9jMiNaMc84qXKkwInZIxDgwVJELlZ8ubc/vKKCM7jKUpoe2l+nsiI5FS8ygwnRHRE7XuLcT/vEGqw6afMZGkGgVdLQpTbuvYXgRgj5hEqvncEEIlM7fadEIkodrEVDEhuOsvb5Juo+46dffhptZqFnGU4QIu4RpcuIUW3EMbOkAhgWd4hTcrtV6sd+tj1Vqyiplz+APr8wdBZpHH</latexit>

Fig. 4.37 Contributions from the left
semi-infinite vortex.

Now we apply this formula to the horseshoe vortex shown in
Fig. 4.35. For the two bound vortices we need to allow some of the
vector magnitudes to extend to infinity to represent the semi-infinite
vortices.

The bound vortex uses all the terms of the formula. We use subscript
𝐵 to denote the vectors shown in Fig. 4.36.

®𝑉𝜃𝐵 =
Γ

4𝜋
®𝑟1𝐵 × ®𝑟2𝐵

(|®𝑟1𝐵 | |®𝑟2𝐵 | + ®𝑟1𝐵 · ®𝑟2𝐵)

(
1

| ®𝑟1𝐵 |
+ 1

| ®𝑟2𝐵 |

)
(4.111)

For the left vortex (Fig. 4.37) we can see that as the end of the vortex
goes to infinity:

|®𝑟1𝐿 | → ∞ (4.112)
®𝑟1𝐿
|®𝑟1𝐿 |

= −𝑥̂ (4.113)

If we divide the top and bottom of Eq. 4.110 by |®𝑟1 | and let |®𝑟1 | → ∞
the expression simplifies (where we use 𝐿 to denote the left vortex):

®𝑉𝜃𝐿 =
Γ

4𝜋
−𝑥̂ × ®𝑟2𝐿

(|®𝑟2𝐿 | − 𝑥̂ · ®𝑟2𝐿)

(
1

| ®𝑟2𝐿 |

)
(4.114)

But note that ®𝑟2𝐿 = ®𝑟1𝐵, so we can rewrite this contribution as:

®𝑉𝜃𝐿 =
Γ

4𝜋
®𝑟1𝐵 × 𝑥̂

(|®𝑟1𝐵 | − ®𝑟1𝐵 · 𝑥̂)

(
1

| ®𝑟1𝐵 |

)
(4.115)

For the right vortex (Fig. 4.38) we see that as the vortex goes off to
infinity:

|®𝑟2𝑅 | → ∞ (4.116)
®𝑟2𝑅
|®𝑟2𝑅 |

= −𝑥̂ (4.117)

If we divide the top and bottom of Eq. 4.110 by |®𝑟2 | and let |®𝑟2 | → ∞
the expression simplifies (where we use 𝑅 to denote the right vortex):

®𝑉𝜃𝑅 =
Γ

4𝜋
®𝑟1𝑅 × −𝑥̂

(|®𝑟1𝑅 | + ®𝑟1𝑅 · −𝑥̂)

(
1

| ®𝑟1𝑅 |

)
(4.118)

But note that ®𝑟1𝑅 = ®𝑟2𝐵, so we can rewrite this contribution as:

®𝑉𝜃𝑅 = − Γ

4𝜋
®𝑟2𝐵 × 𝑥̂

(|®𝑟2𝐵 | − ®𝑟2𝐵 · 𝑥̂)

(
1

| ®𝑟2𝐵 |

)
(4.119)
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x
<latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit>

~r1L
<latexit sha1_base64="v+EMiOCm/QabrpCzgfrHd35eCo8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCFw8eKthaaELZbCft0s0m7G4KJfRvePGgiFf/jDf/jds2B219MPB4b4aZeWEquDau++2UNja3tnfKu5W9/YPDo+rxSUcnmWLYZolIVDekGgWX2DbcCOymCmkcCnwKx7dz/2mCSvNEPpppikFMh5JHnFFjJd+fIMvVrJ9797N+tebW3QXIOvEKUoMCrX71yx8kLItRGiao1j3PTU2QU2U4Ezir+JnGlLIxHWLPUklj1EG+uHlGLqwyIFGibElDFurviZzGWk/j0HbG1Iz0qjcX//N6mYkaQc5lmhmUbLkoygQxCZkHQAZcITNiagllittbCRtRRZmxMVVsCN7qy+ukc1X33Lr3cF1rNoo4ynAG53AJHtxAE+6gBW1gkMIzvMKbkzkvzrvzsWwtOcXMKfyB8/kDNsKRwA==</latexit><latexit sha1_base64="v+EMiOCm/QabrpCzgfrHd35eCo8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCFw8eKthaaELZbCft0s0m7G4KJfRvePGgiFf/jDf/jds2B219MPB4b4aZeWEquDau++2UNja3tnfKu5W9/YPDo+rxSUcnmWLYZolIVDekGgWX2DbcCOymCmkcCnwKx7dz/2mCSvNEPpppikFMh5JHnFFjJd+fIMvVrJ9797N+tebW3QXIOvEKUoMCrX71yx8kLItRGiao1j3PTU2QU2U4Ezir+JnGlLIxHWLPUklj1EG+uHlGLqwyIFGibElDFurviZzGWk/j0HbG1Iz0qjcX//N6mYkaQc5lmhmUbLkoygQxCZkHQAZcITNiagllittbCRtRRZmxMVVsCN7qy+ukc1X33Lr3cF1rNoo4ynAG53AJHtxAE+6gBW1gkMIzvMKbkzkvzrvzsWwtOcXMKfyB8/kDNsKRwA==</latexit><latexit sha1_base64="v+EMiOCm/QabrpCzgfrHd35eCo8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCFw8eKthaaELZbCft0s0m7G4KJfRvePGgiFf/jDf/jds2B219MPB4b4aZeWEquDau++2UNja3tnfKu5W9/YPDo+rxSUcnmWLYZolIVDekGgWX2DbcCOymCmkcCnwKx7dz/2mCSvNEPpppikFMh5JHnFFjJd+fIMvVrJ9797N+tebW3QXIOvEKUoMCrX71yx8kLItRGiao1j3PTU2QU2U4Ezir+JnGlLIxHWLPUklj1EG+uHlGLqwyIFGibElDFurviZzGWk/j0HbG1Iz0qjcX//N6mYkaQc5lmhmUbLkoygQxCZkHQAZcITNiagllittbCRtRRZmxMVVsCN7qy+ukc1X33Lr3cF1rNoo4ynAG53AJHtxAE+6gBW1gkMIzvMKbkzkvzrvzsWwtOcXMKfyB8/kDNsKRwA==</latexit><latexit sha1_base64="v+EMiOCm/QabrpCzgfrHd35eCo8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCFw8eKthaaELZbCft0s0m7G4KJfRvePGgiFf/jDf/jds2B219MPB4b4aZeWEquDau++2UNja3tnfKu5W9/YPDo+rxSUcnmWLYZolIVDekGgWX2DbcCOymCmkcCnwKx7dz/2mCSvNEPpppikFMh5JHnFFjJd+fIMvVrJ9797N+tebW3QXIOvEKUoMCrX71yx8kLItRGiao1j3PTU2QU2U4Ezir+JnGlLIxHWLPUklj1EG+uHlGLqwyIFGibElDFurviZzGWk/j0HbG1Iz0qjcX//N6mYkaQc5lmhmUbLkoygQxCZkHQAZcITNiagllittbCRtRRZmxMVVsCN7qy+ukc1X33Lr3cF1rNoo4ynAG53AJHtxAE+6gBW1gkMIzvMKbkzkvzrvzsWwtOcXMKfyB8/kDNsKRwA==</latexit>

~r2L
<latexit sha1_base64="cWbJXfv5QB4s8tNPsLXnVUZ1a7Y=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSRFsMeCFw8eKtgPaELZbCft0s0m7G4KJeRvePGgiFf/jDf/jds2B219MPB4b4aZeUHCmdKO822VtrZ3dvfK+5WDw6Pjk+rpWVfFqaTYoTGPZT8gCjkT2NFMc+wnEkkUcOwF07uF35uhVCwWT3qeoB+RsWAho0QbyfNmSDOZD7PGQz6s1py6s4S9SdyC1KBAe1j98kYxTSMUmnKi1MB1Eu1nRGpGOeYVL1WYEDolYxwYKkiEys+WN+f2lVFGdhhLU0LbS/X3REYipeZRYDojoidq3VuI/3mDVIdNP2MiSTUKuloUptzWsb0IwB4xiVTzuSGESmZutemESEK1ialiQnDXX94k3Ubdderu402t1SziKMMFXMI1uHALLbiHNnSAQgLP8ApvVmq9WO/Wx6q1ZBUz5/AH1ucPOEiRwQ==</latexit><latexit sha1_base64="cWbJXfv5QB4s8tNPsLXnVUZ1a7Y=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSRFsMeCFw8eKtgPaELZbCft0s0m7G4KJeRvePGgiFf/jDf/jds2B219MPB4b4aZeUHCmdKO822VtrZ3dvfK+5WDw6Pjk+rpWVfFqaTYoTGPZT8gCjkT2NFMc+wnEkkUcOwF07uF35uhVCwWT3qeoB+RsWAho0QbyfNmSDOZD7PGQz6s1py6s4S9SdyC1KBAe1j98kYxTSMUmnKi1MB1Eu1nRGpGOeYVL1WYEDolYxwYKkiEys+WN+f2lVFGdhhLU0LbS/X3REYipeZRYDojoidq3VuI/3mDVIdNP2MiSTUKuloUptzWsb0IwB4xiVTzuSGESmZutemESEK1ialiQnDXX94k3Ubdderu402t1SziKMMFXMI1uHALLbiHNnSAQgLP8ApvVmq9WO/Wx6q1ZBUz5/AH1ucPOEiRwQ==</latexit><latexit sha1_base64="cWbJXfv5QB4s8tNPsLXnVUZ1a7Y=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSRFsMeCFw8eKtgPaELZbCft0s0m7G4KJeRvePGgiFf/jDf/jds2B219MPB4b4aZeUHCmdKO822VtrZ3dvfK+5WDw6Pjk+rpWVfFqaTYoTGPZT8gCjkT2NFMc+wnEkkUcOwF07uF35uhVCwWT3qeoB+RsWAho0QbyfNmSDOZD7PGQz6s1py6s4S9SdyC1KBAe1j98kYxTSMUmnKi1MB1Eu1nRGpGOeYVL1WYEDolYxwYKkiEys+WN+f2lVFGdhhLU0LbS/X3REYipeZRYDojoidq3VuI/3mDVIdNP2MiSTUKuloUptzWsb0IwB4xiVTzuSGESmZutemESEK1ialiQnDXX94k3Ubdderu402t1SziKMMFXMI1uHALLbiHNnSAQgLP8ApvVmq9WO/Wx6q1ZBUz5/AH1ucPOEiRwQ==</latexit><latexit sha1_base64="cWbJXfv5QB4s8tNPsLXnVUZ1a7Y=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSRFsMeCFw8eKtgPaELZbCft0s0m7G4KJeRvePGgiFf/jDf/jds2B219MPB4b4aZeUHCmdKO822VtrZ3dvfK+5WDw6Pjk+rpWVfFqaTYoTGPZT8gCjkT2NFMc+wnEkkUcOwF07uF35uhVCwWT3qeoB+RsWAho0QbyfNmSDOZD7PGQz6s1py6s4S9SdyC1KBAe1j98kYxTSMUmnKi1MB1Eu1nRGpGOeYVL1WYEDolYxwYKkiEys+WN+f2lVFGdhhLU0LbS/X3REYipeZRYDojoidq3VuI/3mDVIdNP2MiSTUKuloUptzWsb0IwB4xiVTzuSGESmZutemESEK1ialiQnDXX94k3Ubdderu402t1SziKMMFXMI1uHALLbiHNnSAQgLP8ApvVmq9WO/Wx6q1ZBUz5/AH1ucPOEiRwQ==</latexit>

x
<latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit><latexit sha1_base64="sS/1Y4RUFRdYgUjEZXi7AEhWI1A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48t2A9oQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJb3ZpqgH9GR5CFn1Fip+TQoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqtTyOIpzBOVyCBzdQhztoQAsYIDzDK7w5D86L8+58LFsLTj5zCn/gfP4A4zeM8g==</latexit>

~r1R
<latexit sha1_base64="UPRf9lgKmla7oCE7oj5G5/r9V9U=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF49VbC00oWy2k3bpZhN2N4US+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fiko5NMMWyzRCSqG1KNgktsG24EdlOFNA4FPoXj27n/NEGleSIfzTTFIKZDySPOqLGS70+Q5WrWz72HWb9ac+vuAmSdeAWpQYFWv/rlDxKWxSgNE1TrnuemJsipMpwJnFX8TGNK2ZgOsWeppDHqIF/cPCMXVhmQKFG2pCEL9fdETmOtp3FoO2NqRnrVm4v/eb3MRI0g5zLNDEq2XBRlgpiEzAMgA66QGTG1hDLF7a2EjaiizNiYKjYEb/XlddK5qntu3bu/rjUbRRxlOINzuAQPbqAJd9CCNjBI4Rle4c3JnBfn3flYtpacYuYU/sD5/AE/4JHG</latexit><latexit sha1_base64="UPRf9lgKmla7oCE7oj5G5/r9V9U=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF49VbC00oWy2k3bpZhN2N4US+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fiko5NMMWyzRCSqG1KNgktsG24EdlOFNA4FPoXj27n/NEGleSIfzTTFIKZDySPOqLGS70+Q5WrWz72HWb9ac+vuAmSdeAWpQYFWv/rlDxKWxSgNE1TrnuemJsipMpwJnFX8TGNK2ZgOsWeppDHqIF/cPCMXVhmQKFG2pCEL9fdETmOtp3FoO2NqRnrVm4v/eb3MRI0g5zLNDEq2XBRlgpiEzAMgA66QGTG1hDLF7a2EjaiizNiYKjYEb/XlddK5qntu3bu/rjUbRRxlOINzuAQPbqAJd9CCNjBI4Rle4c3JnBfn3flYtpacYuYU/sD5/AE/4JHG</latexit><latexit sha1_base64="UPRf9lgKmla7oCE7oj5G5/r9V9U=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF49VbC00oWy2k3bpZhN2N4US+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fiko5NMMWyzRCSqG1KNgktsG24EdlOFNA4FPoXj27n/NEGleSIfzTTFIKZDySPOqLGS70+Q5WrWz72HWb9ac+vuAmSdeAWpQYFWv/rlDxKWxSgNE1TrnuemJsipMpwJnFX8TGNK2ZgOsWeppDHqIF/cPCMXVhmQKFG2pCEL9fdETmOtp3FoO2NqRnrVm4v/eb3MRI0g5zLNDEq2XBRlgpiEzAMgA66QGTG1hDLF7a2EjaiizNiYKjYEb/XlddK5qntu3bu/rjUbRRxlOINzuAQPbqAJd9CCNjBI4Rle4c3JnBfn3flYtpacYuYU/sD5/AE/4JHG</latexit><latexit sha1_base64="UPRf9lgKmla7oCE7oj5G5/r9V9U=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF49VbC00oWy2k3bpZhN2N4US+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fiko5NMMWyzRCSqG1KNgktsG24EdlOFNA4FPoXj27n/NEGleSIfzTTFIKZDySPOqLGS70+Q5WrWz72HWb9ac+vuAmSdeAWpQYFWv/rlDxKWxSgNE1TrnuemJsipMpwJnFX8TGNK2ZgOsWeppDHqIF/cPCMXVhmQKFG2pCEL9fdETmOtp3FoO2NqRnrVm4v/eb3MRI0g5zLNDEq2XBRlgpiEzAMgA66QGTG1hDLF7a2EjaiizNiYKjYEb/XlddK5qntu3bu/rjUbRRxlOINzuAQPbqAJd9CCNjBI4Rle4c3JnBfn3flYtpacYuYU/sD5/AE/4JHG</latexit>

~r2R
<latexit sha1_base64="BryMxPyLQnEMzRMOeK1zzsqWBZE=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSRFsMeCF49V7Ac0oWy2k3bpZhN2N4US8je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IOFMacf5tkpb2zu7e+X9ysHh0fFJ9fSsq+JUUuzQmMeyHxCFnAnsaKY59hOJJAo49oLp3cLvzVAqFosnPU/Qj8hYsJBRoo3keTOkmcyHWeMxH1ZrTt1Zwt4kbkFqUKA9rH55o5imEQpNOVFq4DqJ9jMiNaMc84qXKkwInZIxDgwVJELlZ8ubc/vKKCM7jKUpoe2l+nsiI5FS8ygwnRHRE7XuLcT/vEGqw6afMZGkGgVdLQpTbuvYXgRgj5hEqvncEEIlM7fadEIkodrEVDEhuOsvb5Juo+46dffhptZqFnGU4QIu4RpcuIUW3EMbOkAhgWd4hTcrtV6sd+tj1Vqyiplz+APr8wdBZpHH</latexit><latexit sha1_base64="BryMxPyLQnEMzRMOeK1zzsqWBZE=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSRFsMeCF49V7Ac0oWy2k3bpZhN2N4US8je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IOFMacf5tkpb2zu7e+X9ysHh0fFJ9fSsq+JUUuzQmMeyHxCFnAnsaKY59hOJJAo49oLp3cLvzVAqFosnPU/Qj8hYsJBRoo3keTOkmcyHWeMxH1ZrTt1Zwt4kbkFqUKA9rH55o5imEQpNOVFq4DqJ9jMiNaMc84qXKkwInZIxDgwVJELlZ8ubc/vKKCM7jKUpoe2l+nsiI5FS8ygwnRHRE7XuLcT/vEGqw6afMZGkGgVdLQpTbuvYXgRgj5hEqvncEEIlM7fadEIkodrEVDEhuOsvb5Juo+46dffhptZqFnGU4QIu4RpcuIUW3EMbOkAhgWd4hTcrtV6sd+tj1Vqyiplz+APr8wdBZpHH</latexit><latexit sha1_base64="BryMxPyLQnEMzRMOeK1zzsqWBZE=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSRFsMeCF49V7Ac0oWy2k3bpZhN2N4US8je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IOFMacf5tkpb2zu7e+X9ysHh0fFJ9fSsq+JUUuzQmMeyHxCFnAnsaKY59hOJJAo49oLp3cLvzVAqFosnPU/Qj8hYsJBRoo3keTOkmcyHWeMxH1ZrTt1Zwt4kbkFqUKA9rH55o5imEQpNOVFq4DqJ9jMiNaMc84qXKkwInZIxDgwVJELlZ8ubc/vKKCM7jKUpoe2l+nsiI5FS8ygwnRHRE7XuLcT/vEGqw6afMZGkGgVdLQpTbuvYXgRgj5hEqvncEEIlM7fadEIkodrEVDEhuOsvb5Juo+46dffhptZqFnGU4QIu4RpcuIUW3EMbOkAhgWd4hTcrtV6sd+tj1Vqyiplz+APr8wdBZpHH</latexit><latexit sha1_base64="BryMxPyLQnEMzRMOeK1zzsqWBZE=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSRFsMeCF49V7Ac0oWy2k3bpZhN2N4US8je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IOFMacf5tkpb2zu7e+X9ysHh0fFJ9fSsq+JUUuzQmMeyHxCFnAnsaKY59hOJJAo49oLp3cLvzVAqFosnPU/Qj8hYsJBRoo3keTOkmcyHWeMxH1ZrTt1Zwt4kbkFqUKA9rH55o5imEQpNOVFq4DqJ9jMiNaMc84qXKkwInZIxDgwVJELlZ8ubc/vKKCM7jKUpoe2l+nsiI5FS8ygwnRHRE7XuLcT/vEGqw6afMZGkGgVdLQpTbuvYXgRgj5hEqvncEEIlM7fadEIkodrEVDEhuOsvb5Juo+46dffhptZqFnGU4QIu4RpcuIUW3EMbOkAhgWd4hTcrtV6sd+tj1Vqyiplz+APr8wdBZpHH</latexit>

Fig. 4.38 Contributions from the right
semi-infinite vortex.

Fig. 4.39 Depiction of two vectors
used in computing influence of
bound vortex 𝑗 at control point 𝑖.

Putting it all together (and dropping the 𝐵 subscript): the total
induced velocity at some point 𝑟 measured relative to the bound vortex
corners as seen in Fig. 4.36 is:

®𝑉 =
Γ

4𝜋

[
®𝑟1 × ®𝑟2

(|®𝑟1 | |®𝑟2 | + ®𝑟1 · ®𝑟2)

(
1
| ®𝑟1 |

+ 1
| ®𝑟2 |

)
+ ®𝑟1 × 𝑥̂

(|®𝑟1 | − ®𝑟1 · 𝑥̂)
1
| ®𝑟1 |

− ®𝑟2 × 𝑥̂
(|®𝑟2 | − ®𝑟2 · 𝑥̂)

1
| ®𝑟2 |

]
(4.120)

Finally, we want the velocity for unit circulation and so

𝑉̂𝑖 𝑗 =
1

4𝜋

[
®𝑟1 × ®𝑟2

(|®𝑟1 | |®𝑟2 | + ®𝑟1 · ®𝑟2)

(
1
| ®𝑟1 |

+ 1
| ®𝑟2 |

)
+ ®𝑟1 × 𝑥̂

(|®𝑟1 | − 𝑟1𝑥)
1
| ®𝑟1 |

− ®𝑟2 × 𝑥̂
(|®𝑟2 | − 𝑟2𝑥)

1
| ®𝑟2 |

]
(4.121)

where each vector points from the corner of the horseshoe vortex at
position j to control point i (Fig. 4.39):

®𝑟1 = ®𝑟𝐶𝑃𝑖 − ®𝑟 𝑗 (4.122)
®𝑟2 = ®𝑟𝐶𝑃𝑖 − ®𝑟 𝑗+1 (4.123)

Symmetry

If the aircraft is symmetric then it is more efficient to only solve for the
circulation on half of the aircraft. This reduces the size of the linear
system in half. Solving a dense linear system is approximately an
𝒪(𝑛3) operation, and the linear system solve is the main computational
cost of the VLM, so if taking advantage of symmetry is possible it is
generally worth doing so. This is straightforward in constructing the
AIC matrix. The only change is that for each control point we need to
add the influence of horseshoe vortex 𝑖 as well as the influence from its
mirror image −𝑖. The vector ®𝑟−𝑖 is identical to ®𝑟𝑖 except that the sign of
the y component is flipped (assuming symmetry about the x-z plane).

4.5.2 Near-Field Forces and Moments

Forces and moments can be computed in the near field using the
Kutta-Joukowski theorem:

®𝐹′𝑖 = 𝜌 ®𝑉𝑖 × ®Γ𝑖 (4.124)

First, we must compute the local velocity vector at each bound vortex.
Like the boundary condition, this requires a sum of the the freestream
velocity (translation), rotation, induced velocity, and other external
velocities.

®𝑉 = ®𝑉∞ − ®Ω × ®𝑟𝑏 + ®𝑉𝑖𝑛𝑑 + ®𝑉𝑜𝑡ℎ𝑒𝑟 (4.125)
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This time the induced velocity is not computed at the control points,
but rather at the center of the bound vortex. We can reuse Eq. 4.121,
but evaluated at the center of each bound vortex. This eliminates the
first term (when evaluating the influence of the panel on itself) because
the bound vortex does not induce any velocity on itself. The velocity
induced at the center of vortex i is:

®𝑉𝑖𝑛𝑑,𝑖 =
∑

Γ𝑗𝑉̄𝑖 𝑗 (4.126)

The induced velocity per unit circulation, 𝑉̄𝑖 𝑗 , is computed using
Eq. 4.121, but with the following vectors.

®𝑟1 = ®𝑟 𝑖 ,𝑚𝑖𝑑 − ®𝑟 𝑗 (4.127)
®𝑟2 = ®𝑟 𝑖 ,𝑚𝑖𝑑 − ®𝑟 𝑗+1 (4.128)

where ®𝑟 𝑖 ,𝑚𝑖𝑑 = (®𝑟𝑖 + ®𝑟𝑖+1)/2.
Using the Kutta-Joukowski theorem, where the force is constant

across a panel, results in a force for each panel of:

®𝐹𝑖 = 𝜌 ®𝑉𝑖 × ®Γ𝑖Δ𝑠𝑖 (4.129)

where the direction of Γ is defined by

®Γ𝑖Δ𝑠𝑖 = Γ𝑖(®𝑟𝑖+1 − ®𝑟𝑖) (4.130)

The total forces are then

®𝐹 =
∑
𝑖

®𝐹𝑖 (4.131)

=
∑
𝑖

𝜌Γ𝑖
©­«
∑
𝑗

(Γ𝑗𝑉̂𝑖 𝑗) + ®𝑉∞ − ®Ω × ®𝑟𝑖 + ®𝑉𝑜𝑡ℎ𝑒𝑟,𝑖ª®¬ × (®𝑟𝑖+1 − ®𝑟𝑖) (4.132)

The total moments are given by:

®𝑀 =
∑
𝑖

®𝑟𝑚,𝑖 × ®𝐹𝑖 (4.133)

where ®𝑟𝑚,𝑖 is the vector originating from some specified reference point
(often the aircraft c.g.) and ending at the location of force 𝐹𝑖 (i.e.,
®𝑟𝑚,𝑖 = ®𝑟𝑖 ,𝑚𝑖𝑑 − ®𝑟𝑐𝑔).

These forces and moments are in the body coordinate system.
However, as aerodynamicists, we generally care about forces in the
wind axes (oriented with the freestream) because that is the coordinate
system where lift and drag are defined. The rotation from body axes to
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wind axes is accomplished by the following rotations:
𝐷

𝑌

𝐿

 =


cos 𝛽 − sin 𝛽 0
sin 𝛽 cos 𝛽 0

0 0 1




cos 𝛼 0 sin 𝛼
0 1 0

− sin 𝛼 0 cos 𝛼



𝐹𝑥
𝐹𝑦
𝐹𝑧

 (4.134)

We rotate moments similarly (although for dynamics leaving them in
the body-coordinate system in generally preferred).

4.5.3 Simpler Alternative to Estimating Forces/Moments

The above procedure for computing the forces/moments is a bit complex
for a first implementation and not necessary most of the time. For many
simulations there is no sideslip, rotation, or gusts. Furthermore, if we
neglect the impact of self-induction on the forces/moments we can
simplify the calculations greatly. Most scenarios are symmetric, and
thus the side force, rolling moment, and yawing moment calculations
are unnecessary as they will end up at zero. This impact of induction on
lift is almost always negligibly small, and consequently the impact on
pitching moments is too. Drag is of course, a different story as it occurs
because of the induced velocities, but this is most accurately computed
with a far-field method anyway (discussed in following section).

In other words, we assume that the total velocity vector is:

®𝑉 =


𝑉∞ cos 𝛼

0
𝑉∞ sin 𝛼

 (4.135)

With this assumptions the lift across the wing can be computed as:

𝐿 = 𝜌𝑉∞
∑
𝑖

Γ𝑖(𝑦𝑖+1 − 𝑦𝑖) (4.136)

where the sum occurs across each panel. This can be derived from
the above equations neglecting the induction terms, or directly from
the Kutta-Joukowski theorem using a wind coordinate system. To
see this, note that the trailing vortices are in the 𝑥-direction and so
the x-component of velocity will not contribute any force, and the
z-component will only create forces in the 𝑦 direction, which must all
cancel out for a symmetric case. The bound vortex can, in general, have
all three components. The 𝑥 component is the same as the trailing
vortices and contributes nothing. The 𝑧 component is the same (just
reversed role for 𝑥 and 𝑧). The only nonzero contributor is the 𝑦

component of circulation. Thus, the lift from an individual panel is:

𝜌𝑉∞Γ𝑦Δ𝑠 (4.137)
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Fig. 4.40 Depiction of a vortex seg-
ment on a swept wing.

Fig. 4.41 Direction of lift and distance
from c.g. to location lift is computed
at.

However, from Fig. 4.40 we see that Γ𝑦 = Γ cosΛ and the length
Δ𝑠 = 𝑑𝑦/cosΛ thus the lift from an individual panel can be expressed
as:

𝜌𝑉∞ΓΔ𝑦 (4.138)

This expression is equally valid for nonplanar wings.
Similarly, the pitching moment is given by:

𝑀 = −𝜌𝑉∞ cos 𝛼
∑
𝑖

𝑟𝑥 𝑖Γ𝑖(𝑦𝑖+1 − 𝑦𝑖) (4.139)

where 𝑟𝑥 is the distance in the body frame from the point where the
moment is computed about (usually the c.g.) to the middle of the
quarter chord of each panel. Keep in mind that that this is the moment
from the lift distribution and does not include any pitching moments
generated by the airfoil shape. In other words, one generally needs to
add the pitching moments contributed from the airfoils to obtain an
accurate total pitching moment of the wing/aircraft.

Notice that the angle of attack appears because the lift is perpendic-
ular to 𝑉∞ (wind frame) but the distance 𝑟𝑥 is measured in the body
frame (see Fig. 4.41). This simplified approach leaves out one additional
term, the contribution to the moment from 𝑟𝑧𝐹𝑥 . Effectively this is
the contribution of drag to the pitching moment (though not exactly,
because 𝐹𝑥 and drag occur in different axes), but this term is almost
always very small as drag is much smaller than lift and 𝑟𝑧 is much
smaller than 𝑟𝑥 .

4.5.4 Far-field Induced Drag

The induced drag can also be evaluated in the far-field using a Trefftz
plane analysis with a drag-free wake. We leverage the concept discussed
in Section 1.11 where forces can be determined from the velocity and
pressure field on far away control surfaces. In the case of drag, for
an incompressible flow, we only need to know the velocity field on a
downstream plane, which is called the Trefftz plane. This procedure
generally produces a more accurate estimate of induced drag.

The proper way to evaluate the drag is to evolve the wake down-
stream (this is called a force-free wake). Unfortunately, wake propa-
gation is computationally intensive. A far-field analysis shows that a
drag-free wake, even though the wake shape is nonphysical, produces
the same induced drag as the actual force-free wake*. A drag-free wake

*Not exactly. We do need to neglect a couple of terms, though a careful analysis of a
variety of wing shapes shows those terms to be negligibly small, especially for the level
of fidelity we are interested in with a VLM.
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(i.e., a wake that simply moves straight back in the freestream direction)
is much simpler to compute. Using our wind coordinate system it
means that the wake simply projects straight back in the +𝑥𝑤 direction
(which differs from the +𝑥𝑏 direction we have been using, although the
difference between these two is generally negligibly small for purposes
of projecting the wake). The induced drag calculation then simply
becomes a two-dimensional analysis computing the influence of the
wake on itself.

A farfield analysis shows that the induced drag is (a general result,
not specific to VLM):

𝐷𝑖 =

∫
𝜌

2𝑉𝑛Γ𝑑𝑠 (4.140)

where the integral is performed across the wake trace, Γ is the circulation
shed at the trailing edge of the aircraft, equivalent to the potential jump
across the wake, and 𝑉𝑛 is the normlwash (induced velocity normal to
the wake). For the VLM case, we have discretized spanwise panels and
so the induced drag becomes a summation:

𝐷𝑖 =
𝜌

2

∑
𝑖

𝑉𝑛 𝑖Γ𝑖Δ𝑠𝑖 (4.141)

Fig. 4.42 Wake trace from horseshoe
vortices in farfield. Only half of wing
is shown, but the below assumes we
are modeling the full wing.

Each panel sheds two vortices of opposite signs, that overlap with
the neighboring vortices as shown in Fig. 4.42. These vortex strengths
partially cancel. If Γ𝑖 defines the circulation of each horseshoe vortex,
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Fig. 4.43 Diagram for computing in-
duced velocities in farfield.

and 𝛾𝑖 is the net circulation of each point vortex in the far-field, then:

𝛾𝑖 =


−Γ1 for 𝑖 = 1
Γ𝑖−1 − Γ𝑖 for 𝑖 = 2 . . . 𝑛
Γ𝑛 for 𝑖 = 𝑛 + 1

(4.142)

Figure 4.43 diagrams the analysis we need to perform. A given
point vortex 𝑗 induces a velocity on the center of panel 𝑖. The center
point of panel 𝑖 is the projection of the control points, or if not given we
will assume linear spacing:

𝑦̄𝑖 =
1
2 (𝑦𝑖+1 + 𝑦𝑖) (4.143)

𝑧̄𝑖 =
1
2 (𝑧𝑖+1 + 𝑧𝑖) (4.144)

(4.145)

Each point vortex 𝛾𝑗 induces a tangential velocity given by:

®𝑉𝜃,𝑖 𝑗 =
®𝛾𝑗 × 𝑟𝑖 𝑗
2𝜋|𝑟𝑖 𝑗 |

=
®𝛾𝑗 × ®𝑟𝑖 𝑗
2𝜋|𝑟𝑖 𝑗 |2

(4.146)

The induced velocity𝑉𝜃 is always perpendicular to 𝑟𝑖 𝑗 , but we want the
component of velocity that is normal to panel 𝑖 (the negative sign exists
because downwash is positive in the induced drag calculation):

𝑉𝑛 𝑖𝑗 = −®𝑉𝜃,𝑖 𝑗 · 𝑛̂𝑖 (4.147)
(4.148)

and
𝑉𝑛 𝑖 =

∑
𝑗

𝑉𝑛 𝑖𝑗 (4.149)

The induced drag is thus:

𝐷𝑖 =
𝜌

2

∑
𝑖

∑
𝑗

Γ𝑖𝑉𝑛 𝑖𝑗Δ𝑠𝑖 (4.150)

=
𝜌

2

∑
𝑖

∑
𝑗

Γ𝑖

(
−
®𝛾𝑗 × ®𝑟𝑖 𝑗
2𝜋|𝑟𝑖 𝑗 |2

)
· 𝑛̂𝑖Δ𝑠𝑖 (4.151)

(4.152)

The circulation is always aligned with the x-axis because it is a
drag-free wake, and thus 𝑟 is always in the 𝑦 − 𝑧 plane. Calculating this
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explicitly:

®𝛾𝑗 = 𝛾𝑗 𝑥̂ (4.153)
®𝑟𝑖 𝑗 = (𝑦̄𝑖 − 𝑦 𝑗)𝑦̂ + (𝑧̄𝑖 − 𝑧 𝑗)𝑧̂ (4.154)

®𝛾𝑗 × ®𝑟𝑖 𝑗 = 𝛾𝑗(𝑦̄𝑖 − 𝑦 𝑗)𝑧̂ − 𝛾𝑗(𝑧̄𝑖 − 𝑧 𝑗)𝑦̂ (4.155)
𝑛̂𝑖 = − sin 𝜙𝑖 𝑦̂ + cos 𝜙𝑖 𝑧̂ (4.156)

𝑛̂𝑖Δ𝑠𝑖 = −(𝑧𝑖+1 − 𝑧𝑖)𝑦̂ + (𝑦𝑖+1 − 𝑦𝑖)𝑧̂ (4.157)
( ®𝛾𝑗 × ®𝑟𝑖 𝑗) · (𝑛̂𝑖Δ𝑠𝑖) = 𝛾𝑗(𝑧̄𝑖 − 𝑧 𝑗)(𝑧𝑖+1 − 𝑧𝑖) + 𝛾𝑗(𝑦̄𝑖 − 𝑦 𝑗)(𝑦𝑖+1 − 𝑦𝑖)

(4.158)

𝑉𝑛 𝑖𝑗Δ𝑠𝑖 =
−𝛾𝑗(𝑧̄𝑖 − 𝑧 𝑗)(𝑧𝑖+1 − 𝑧𝑖) − 𝛾𝑗(𝑦̄𝑖 − 𝑦 𝑗)(𝑦𝑖+1 − 𝑦𝑖)

2𝜋[(𝑦̄𝑖 − 𝑦 𝑗)2 + (𝑧̄𝑖 − 𝑧 𝑗)2]
(4.159)

The result is that the induced drag is given by:

𝐷𝑖 =
𝜌

4𝜋

𝑛∑
𝑖=1

𝑛+1∑
𝑗=1

Γ𝑖𝛾𝑗 𝑘𝑖 𝑗 (4.160)

where

𝑘𝑖 𝑗 =
(𝑦 𝑗 − 𝑦̄𝑖)(𝑦𝑖+1 − 𝑦𝑖) + (𝑧 𝑗 − 𝑧̄𝑖)(𝑧𝑖+1 − 𝑧𝑖)

(𝑦 𝑗 − 𝑦̄𝑖)2 + (𝑧 𝑗 − 𝑧̄𝑖)2
(4.161)

The sum over 𝑖 occurs across each control point, whereas the sum over
𝑗 occurs over each vortex at the edges of the panels.

Symmetry

If the wing and circulation distribution is symmetric, and we model
only half of the wing, then the induced drag only requires a sum on
half of the wing (multiplied by 2):

𝐷𝑖 = 𝜌∞

𝑁∑
𝑖=1

𝑉𝑛 𝑖Γ𝑖Δ𝑠𝑖 (4.162)

If we sum only over half of the wing we have to modify the calculation
of Γ1 since the circulation in the middle of the wing exactly cancels
with the other side (see Fig. 4.42).

𝛾𝑖 =


0 for 𝑖 = 1
Γ𝑖−1 − Γ𝑖 for 𝑖 = 2 . . . 𝑛
Γ𝑛 for 𝑖 = 𝑛 + 1

(4.163)
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Fig. 4.44 Induced velocity in the
farfield for a symmetric configura-
tion.

Also, when calculating the induced velocity at panel 𝑖 we should
add not only the contribution from 𝛾𝑗 on the same side of the wing, but
the contribution from 𝛾𝑗 on the opposite side of the wing as depicted
in Fig. 4.44. The resulting induced drag is:

𝐷𝑖 =
𝜌

2𝜋

𝑛∑
𝑖=1

𝑛+1∑
𝑗=1

Γ𝑖𝛾𝑗(𝑘𝑖 , 𝑗 − 𝑘𝑖 ,−𝑗) (4.164)

where

𝑘𝑖 ,±𝑗 =
(±𝑦 𝑗 − 𝑦̄𝑖)(𝑦𝑖+1 − 𝑦𝑖) + (𝑧 𝑗 − 𝑧̄𝑖)(𝑧𝑖+1 − 𝑧𝑖)

(±𝑦 𝑗 − 𝑦̄𝑖)2 + (𝑧 𝑗 − 𝑧̄𝑖)2
(4.165)
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Potential flow has been a useful assumption allowing us to solve for
aerodynamic flowfields around low-speed objects. The inclusion of
a boundary layer model addressed a major limitation of the viscous
(non-irrotational) behavior near the body. In this section we discuss
fundamentals of compressible flow. We then relax the incompressibility
assumption to extend potential flow to some compressible flow regimes.
We will see that we can extend the methodologies we have been using to
compressible flow fields if we can add a restriction on small disturbances
(thin bodies, small angles of attack). Finally, we discuss shock wave
and expansion theory, which are exact solutions as an alternative to the
simplifications introduced for compressible potential flow.

5.1 Compressible Flow Fundamentals

We begin with a review of thermodyamics and some key concepts
related to compressible flow.

5.1.1 Mach Cone

As an initial motivation to compressibility, consider a one-dimensional
disturbance in a pipe. Imagine a small transmitter that makes a periodic
beeping noise. In the top of Fig. 5.1 we see sound waves moving, at
the speed of sound (𝑎), in both directions. Now imagine a freestream
flow in the pipe, moving left to right, at a speed less than the speed of
sound. This scenario is depicted in the middle pane of Fig. 5.1. The
sound waves moving to the left of the transmitter now move at the
reduced speed 𝑎 −𝑉 , relative to an inertial frame, whereas the sound
waves on the right move faster at the speed 𝑉 + 𝑎. From the figure we
see that the frequency is also changed with the background moving
air so that the waves are compressed to the left, and expanded to the
right. If we now increase the freestream speed so that 𝑉 is greater than
the speed of sound, we have the scenario on the bottom of Fig. 5.1.
The sound waves emitted to the right move even faster at the speed
𝑉 + 𝑎. However, the sound waves that were emitted to the left, are

145
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completely overwhelmed by the high speed flow, and actually move
to the right at the speed 𝑉 − 𝑎. Thus, no sound waves are transmitted
upstream. In other words, if you were standing in the pipe upstream of
the transmitter, you could walk all the way up to it and not hear it at all.
In supersonic flow disturbances cannot flow upstream.

Fig. 5.1 A one-dimensional flow ex-
ample with a sound wave emitter and
varying freestream speeds in a pipe.

Let’s now consider a similar scenario in three dimensions. In the
stationary case, not drawn, spherical sound waves radiate out in all
directions. Now imagine that the transmitter is moving at a subsonic
speed (𝑀 < 1), or equivalently is stationary in a subsonic freestream.
This is depicted on the left of Fig. 5.2. The scenario is similar to that

Fig. 5.2 A three-dimensional flow ex-
ample with a sound wave emitter and
varying freestream speeds.

of the one-dimensional case with subsonic inflow. The sound waves
are compressed in the front, and expand in the back. As we increase in
speed, we reach the limiting case (𝑀 = 1), where no sound waves are
omitted forward, instead they pile up in a vertical front. The case on
the right shows the scenario where the transmitter moves faster than
the speed of sound (𝑀 > 1). In this case, all the sound waves travel to
the right, like that they do in the 1D case, except that they form a Mach
cone.

Another way to think about this shape, is that as each spherical
sound wave is emitted, the transmitter flys faster than that wave, thus
moving outside of it, before emitting the next wave. Instead of piling
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Fig. 5.3 Mach cone and one sound
wave depicted.

up vertically, the sound waves pile up along the Mach cone. As the
Mach number increases the Mach cone tilts flatter. Isolating one sound
wave in Fig. 5.3 we can see that the angle if related by:

sin𝜇 =
𝑎

𝑉
=

1
𝑀

(5.1)

Therefore the Mach angle is given by:

𝜇 = sin−1
(

1
𝑀

)
(5.2)

Like the 1D case, the implication is that outside of the Mach cone you
could not hear the transmitter. Notice that if you are above (or below)
the transmitter, there are regions you could be where the transmitter
would fly past you but you still would not have heard it yet.

For an aircraft the scenario is similar, except that the pressure waves
are continuous, and they are not infinitesimally weak disturbances
(which is what sound waves are). Instead, we get shock waves, which
will be discussed later in this chapter. But for now we note that a Mach
cone is an infinitesimally weak shock wave and represents the limiting
case.

5.1.2 Ideal Gas

In fluids we are primarily interested in intensive properties. Intensive
properties are not dependent on the size of the system, and instead are
properties defined at a point. Some intensive variables, like pressure,
temperature, and density, that we are already familiar with, do not
have an extensive counterpart (extensive variables depend on the size
of the system). Other intensive variables that do have an extensive
counterpart are often referred to as specific quantities, and are defined
per unit mass. For example, specific volume, 𝜈, is the volume per unit
mass, or the inverse of density:

𝜈 =
1
𝜌

(5.3)

Specific internal energy, 𝑒, is the internal energy per unit mass, and
specific entropy, 𝑠, is the entropy per unit mass. Specific enthalpy, ℎ, is
the enthalpy per unit mass and is defined as:

ℎ = 𝑒 + 𝑝𝜈 (5.4)

Conceptually, you could think of enthalpy as a combination of internal
energy plus work, where the work is that required to reach the given
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pressure and volume. Note that even though we have used the term
“work”, enthalpy, like all of these other parameters, is a state variable,
meaning that it is path independent and only depends on the current
state. The variables pressure, temperature, and density that we are
already familiar with are also state variables.

Thermodynamic state variables are related through an equation of
state. Any two intensive thermodynamic quantities completely define
the state. In other words, a third variable would not be independent
but rather would depend on the first two. We can write any intensive
property as a function of any two other intensive properties. For
example:

𝑒 = 𝑒(𝑠, 𝑇) (5.5)
𝑇 = 𝑇(𝑠, 𝑣) (5.6)
𝑝 = 𝑝(ℎ, 𝑇) (5.7)

The most common equation of state is the ideal gas law:

𝑝 = 𝑝(𝜌, 𝑇) = 𝜌𝑅𝑇 (5.8)

where 𝑅 is the specific gas constant. For air, that is not chemically reacting,
its value is:

𝑅 = 286.9 J
kg · K (5.9)

An ideal gas assumes that the intermolecular forces between the gas
molecules are negligible. In contrast, a real gas accounts for intermolecu-
lar forces. Intermolecular forces become significant if the air is at a very
high pressure and a low temperature, a scenario which rarely applies
in the field of aerodynamics. Sometimes vibration, dissociation, and
ionization that occurs at the high temperatures of reentry vehicles are
called real-gas effects, but this is a misnomer. These behaviors are not
caused by intermolecular forces, but rather by chemical reactions and
other high temperature effects that we shall discuss shortly.

The most general case of ideal gases occurs with chemically reacting
mixtures of ideal gases. In this case chemical reactions occur, but
intermolecular forces are still negligible. Air becomes a chemically
reacting mixture of ideal gases above approximately 2500 K.

If there are no chemical reactions, then for an ideal gas the internal
energy only depends on temperature. The proof is a bit lengthy, but
traverses some concepts we need anyway.

We start with the first law of thermodynamics, which can be ex-
pressed as:

𝑑𝑒 = 𝛿𝑞 + 𝛿𝑤 (5.10)
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This equation states that the change in the internal energy of an isolated
system is equal to the energy applied as heat (𝑞) and as work on the
surroundings (𝑤). We use the differential 𝑑𝑒 because internal energy is
a state variable, whereas the changes in work and heat and noted by 𝛿
since they are, in general, path dependent. For a reversible process (e.g.,
inviscid), the work done by a fluid on a system is:

𝛿𝑤 = −𝑝𝑑𝜈 (5.11)

The second law of thermodynamics can be expressed as:

𝑑𝑠 ≥ 𝛿𝑞

𝑇
(5.12)

where 𝑠 is the entropy, and 𝑇 is the temperature. In an idealized
process, where the heat transfer is reversible, then the expression is
an equality and we place these last two equations in the first law of
thermodynamics to obtain:

𝑑𝑒 = 𝑇𝑑𝑠 − 𝑝𝑑𝜈 (5.13)

or
𝑇𝑑𝑠 = 𝑑𝑒 + 𝑝𝑑𝜈 (5.14)

which is known as Gibbs equation. This is an expression of the first and
second law of thermodynamics for a reversible process, or as a way
to relate thermodynamic variables at a given state. We can also write
this equation in terms of enthalpy by taking derivatives of its definition
(Eq. 5.4) and substituting in the Gibbs equation:

𝑇𝑑𝑠 = 𝑑ℎ − 𝜈𝑑𝑝 (5.15)

Or we can express in terms of the Gibbs free energy: 𝑔 = ℎ = 𝑇𝑠.
Substituting this into Gibbs equation gives:

𝑑𝑔 = 𝜈𝑑𝑝 − 𝑠𝑑𝑇 (5.16)

To prove that internal energy for an ideal gas depends only on
temperature, let us first assume the general case, where internal energy
depends on two variables: 𝑒 = 𝑒(𝑃, 𝑇). The total differential is given by:

𝑑𝑒 =

(
𝜕𝑒

𝜕𝑝

)
𝑇

𝑑𝑝 +
(
𝜕𝑒

𝜕𝑇

)
𝑝

𝑑𝑇 (5.17)

We want to derive the conditions where the dependence on pressure
drops out, and the internal energy thus only depends on temperature.
In other words, to show under what conditions:(

𝜕𝑒

𝜕𝑝

)
𝑇

= 0 (5.18)
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We can rewrite the Gibbs equation (Eq. 5.14) in terms of this derivatives:(
𝜕𝑒

𝜕𝑝

)
𝑇

= 𝑇

(
𝜕𝑠

𝜕𝑝

)
𝑇

− 𝑝
(
𝜕𝜈

𝜕𝑝

)
𝑇

(5.19)

If we compare one of the forms of Gibbs equation (Eq. 5.16) with a
differential for 𝑔(𝑝, 𝑇):

𝑑𝑔 =

(
𝜕𝑔

𝜕𝑝

)
𝑇

𝑑𝑝 +
(
𝜕𝑔

𝜕𝑇

)
𝑝

𝑑𝑇 (5.20)

we see that:
𝜈 =

(
𝜕𝑔

𝜕𝑝

)
𝑇

(5.21)

and
𝑠 = −

(
𝜕𝑔

𝜕𝑇

)
𝑝

(5.22)

The second partial derivatives shown below must also be equal:

𝜕2𝑔

𝜕𝑝𝜕𝑇
=

𝜕2𝑔

𝜕𝑇𝜕𝑝
(5.23)

Applying that in this case gives:(
𝜕𝜈

𝜕𝑇

)
𝑝

= −
(
𝜕𝑠

𝜕𝑝

)
𝑇

(5.24)

This is one of the Maxwell relations. We can derive other such identities
in a similar way using different forms of the Gibbs equation, comparing
the differentials, and equating second derivatives. For our present
purposes this is the only identity we need. We substitute this into
Eq. 5.19 to obtain: (

𝜕𝑒

𝜕𝑝

)
𝑇

= −𝑇
(
𝜕𝜈

𝜕𝑇

)
𝑝

− 𝑝
(
𝜕𝜈

𝜕𝑝

)
𝑇

(5.25)

We now have a relationship between internal energy and the specific
volume. The right side vanishes for a constant density fluid. But it also
vanishes for an ideal gas (𝜈 = 𝑅𝑇

𝑝 ):(
𝜕𝑒

𝜕𝑝

)
𝑇

= −𝑇 𝑅
𝑝
+ 𝑝 𝑅

𝑇𝑝2 = 0 (5.26)

Actually, it vanishes any fluid where 𝜈 = 𝑓 (𝑇/𝑝). Thus, the left side of
Eq. 5.17 vanishes and so 𝑒 = 𝑒(𝑇) only. From the definition of enthalpy,
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we can show that for an ideal gas the enthalpy also only depends on
temperature.

ℎ = 𝑒 + 𝑝𝜈 (5.27)
= 𝑒 + 𝑅𝑇 (5.28)
= 𝑒(𝑇) + 𝑅𝑇 (5.29)

⇒ℎ = ℎ(𝑇) (5.30)

We call this a thermally perfect gas.

5.1.3 Heat Capacity

A thermally perfect gas has implications on its heat capacity. The specific
heat capacity is heat capacity per unit mass, where heat capacity refers
to the amount of heat required to produce a unit change in temperature.
For a gas, heat capacity differs significantly if the heating occurs in a
fixed container (constant volume), or in the atmosphere where it can
expand (constant pressure). These two quantities are called the specific
heat capacity at constant volume and constant pressure respectively.
Mathematically they are defined as:

𝑐𝜈 ≡
(
𝜕𝑒

𝜕𝑇

)
𝜈

(5.31)

𝑐𝑝 ≡
(
𝜕ℎ

𝜕𝑇

)
𝑝

(5.32)

For a thermally perfect gas, both 𝑒 and ℎ are functions only of tempera-
ture and so these become simple differentials.

𝑐𝜈 ≡
(
𝑑𝑒

𝑑𝑇

)
𝜈

(5.33)

𝑐𝑝 ≡
(
𝑑ℎ

𝑑𝑇

)
𝑝

(5.34)

For a calorically perfect gas, the specific heats are also independent of
temperature, and are thus considered constants.

𝑒 = 𝑐𝜈𝑇

ℎ = 𝑐𝑝𝑇

(5.35)
(5.36)

For both of these latter two cases, the specific heats are related to
the specific gas constant as follows. From the definitions of the specific
heat capacities:

𝑐𝑝 − 𝑐𝜈 =
𝑑

𝑑𝑇
(ℎ − 𝑒) (5.37)



5 Compressible Flow 152

Fig. 5.4 Air is comprised of diatomic
molecules.

We then use the definition of enthalpy (Eq. 5.4):

𝑐𝑝 − 𝑐𝜈 =
𝑑

𝑑𝑇
(𝑝𝜈) (5.38)

Now, the ideal gas law (Eq. 5.8):

𝑐𝑝 − 𝑐𝜈 =
𝑑

𝑑𝑇
(𝑅𝑇) = 𝑅 (5.39)

Thus,
𝑐𝑝 − 𝑐𝜈 = 𝑅 (5.40)

Another key parameter is the ratio of specific heats:

𝛾 =
𝑐𝑝

𝑐𝜈
(5.41)

Using this equation and Eq. 5.40 we can show that:

𝑐𝑝 =
𝛾

𝛾 − 1𝑅 (5.42)

𝑐𝜈 =
1

𝛾 − 1𝑅 (5.43)

Thus, any two of these constants defines the gas.
To better understand the different conditions separating calorically

perfect, thermally perfect, a chemically reacting mixture of ideal gases,
and real gases, we consider the nature of the diatomic molecules that
make up air (Fig. 5.4). In classical statistical mechanics the internal
energy of a molecule is given by:

𝑒 =
1
2𝑛𝑅𝑇 (5.44)

where 𝑛 is the number of degrees of freedom. Or in terms of the specific
heat capacity at constant volume:

𝑐𝜈 =
𝜕𝑒

𝜕𝑇
=

1
2𝑛𝑅 (5.45)

For most aerodynamic scenarios the temperature is such that the
translational and rotational degrees of freedom are active. There are
three translational modes, and while there are also three rotational
modes, in practice only two are realized. That is because of the nature of
a diatomic molecule where the moment of inertia about the internuclear
axis (line joining the two atoms), is negligibly small compared to the
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moments of inertia about the other two axes (not only because of the
shape but also because almost all the mass of an atom is concentrated
at its center). Thus, it would take an inordinately high temperature
to reach this last rotational energy state. Thus, for most aerodynamic
scenarios these five modes are activated, and the specific heats can be
considered constant (i.e., calorically perfect):

𝑐𝜈 =
5
2𝑅 (5.46)

𝑐𝑝 =
7
2𝑅 (5.47)

𝛾 =
7
5 = 1.4 (5.48)

For everything in this book we will assume a calorically perfect gas.
If temperature increases beyond approximately 700 K (e.g., at higher

Mach numbers), then the vibration mode is activated, which is an
exchange of potential and kinetic energy along the internuclear axis. In
this case, the specific heats can no longer be considered constant, but
rather are a function of temperature (i.e., thermally perfect).

If temperature increases even further, beyond approximately 2500K
for air, then chemical reactions begin (i.e., a chemically reacting mixture
of ideal gases). Now the specific heats are a function of temperature
and pressure.

To reach the “real” gas state (i.e., not an ideal gas), we would need
to go the other way and decrease temperature, while simultaneously
increasing pressure tremendously (say above 1,000 atm).

5.1.4 Isentropic Relations

An isentropoic flow is both adiabatic (no heat or mass transfer) and is
reversible. In this case:

𝐷𝑠

𝐷𝑡
= 0 , (5.49)

which means that the total derivative of the entropy is zero. In other
words, the entropy is constant for a given fluid particle. If steady, then
the entropy is constant along a streamline, and any many aerodynamic
flows the freestream is uniform and so the entropy is then constant
everywhere.

We use Gibbs equation (Eq. 5.14), rewritten as follows:

𝑑𝑠 =
𝑑𝑒

𝑇
+ 𝑝

𝑇
𝑑𝜈 (5.50)
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Using the definition of the heat capacity at constant volume for a
calorically perfect gas (Eq. 5.35) for the 𝑑𝑒 term, and the ideal gas
equation of state for the second term (Eq. 5.8) yields:

𝑑𝑠 = 𝑐𝜈
𝑑𝑇

𝑇
+ 𝑅 𝑑𝜈

𝜈
(5.51)

If calorically perfect then 𝑐𝜈 is constant with temperature and we can
integrate both sides:

𝑠2 − 𝑠1 = 𝑐𝜈 ln
(
𝑇2
𝑇1

)
+ 𝑅 ln

(
𝜈2
𝜈1

)
(5.52)

For an isentropic process 𝑠2 − 𝑠1 = 0 and thus we have:

𝑐𝜈

𝑅
ln

(
𝑇2
𝑇1

)
= − ln

(
𝜈2
𝜈1

)
(5.53)

Using the properties of a logarithm, we can rewrite both terms as:

ln
(
𝑇2
𝑇1

) 𝑐𝜈
𝑅

= ln
(
𝜈1
𝜈2

)
= ln

(
𝜌2

𝜌1

) (5.54)

Using Eq. 5.43 and taking the exponential of both sides gives:(
𝑇2
𝑇1

) 1
𝛾−1

=

(
𝜌2

𝜌1

)
(5.55)

Similarly, we can use Gibbs equation in terms of the enthalpy
(Eq. 5.15):

𝑑𝑠 =
𝑑ℎ

𝑇
− 𝜈

𝑑𝑝

𝑇
(5.56)

Use the definition of the coefficient of specific heat at constant pressure,
for a thermally perfect gas (Eq. 5.36), and the ideal gas law (Eq. 5.8):

𝑑𝑠 = 𝑐𝑝
𝑑𝑇

𝑇
− 𝑅 𝑑𝑝

𝑝
(5.57)

We integrate both sides and use the isentropic assumption:

0 = 𝑐𝑝 ln
(
𝑇2
𝑇1

)
− 𝑅 ln

(
𝑝2

𝑝1

)
(5.58)

Use the logarithm properties and Eq. 5.42 gives:

ln
(
𝑇2
𝑇1

) 𝛾
𝛾−1

= ln
(
𝑝2

𝑝1

)
(5.59)
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Taking the exponential of both sides results in:(
𝑇2
𝑇1

) 𝛾
𝛾−1

=

(
𝑝2

𝑝1

)
(5.60)

Comparing this equation with Eq. 5.55 we have the isentropic relations
for a calorically perfect gas:

𝑝2

𝑝1
=

(
𝜌2

𝜌1

)𝛾
=

(
𝑇2
𝑇1

) 𝛾
𝛾−1

(5.61)

5.1.5 Energy Equation

For incompressible flows we only needed a mass and momentum
equation. Those balance laws provide 4 equations for the 4 indepen-
dent variables (pressure and the three components of velocity). For
compressible flows we have added another variable, 𝜌, and so need
another equation. The internal energy and temperature are not new
variables but rather are state variables defined through an equation of
state (Section 5.1.2) and heat capacity equations (Section 5.1.3).

Following the same pattern as shown previously in Eq. 1.58 we can
form an energy balance equation:

𝜕

𝜕𝑡

∫
–𝑉
𝜌𝜖𝑑–𝑉 +

∫
𝑆

𝜌𝜖( ®𝑉 · 𝑑 ®𝐴) = ¤𝑊𝑖𝑛 + ¤𝑄𝑖𝑛 (5.62)

where 𝜖 = 𝑒 + 𝑉2

2 is the total specific energy (specific internal energy
plus specific kinetic energy), and the last two terms are the net work and
heat into the system. This is a form of the first law of thermodynamics
(Eq. 5.10).

Work on the fluid comes from pressure and shear stresses acting on
the exterior control surface. As it is not used in this chapter will not
expand on the viscous component of the work term:

¤𝑊 = −
∫
𝑆

𝑝( ®𝑉 · 𝑑 ®𝐴) +𝑊viscous (5.63)

Other sources of work internal to the the control volume, for example
from a shaft, may exist and would need to explicitly added.

For heat there is a volumetric heating term and a viscous term that
we do not expand on here:

¤𝑄 =

∫
–𝑉
𝜌 ¤𝑞𝑑–𝑉 +𝑄viscous (5.64)

where ¤𝑞 is the rate of heat addition per unit mass.



5 Compressible Flow 156

If we plug this into the above energy equation it becomes:

𝜕

𝜕𝑡

∫
–𝑉
𝜌𝜖𝑑–𝑉 +

∫
𝑆

𝜌ℎ𝑇( ®𝑉 · 𝑑 ®𝐴) =
∫

–𝑉
𝜌 ¤𝑞𝑑–𝑉 +𝑊viscous +𝑄viscous

(5.65)

where ℎ𝑇 = ℎ + 𝑉2

2 is the total enthalpy, and ¤𝑊𝑜𝑡ℎ𝑒𝑟,𝑖𝑛 refers to other
work terms.

Commuting differentiation and integration, and using the diver-
gence theorem results in:∫

–𝑉
𝜕𝜌𝜖

𝜕𝑡
𝑑–𝑉 +

∫
–𝑉
∇ · (𝜌ℎ𝑇 ®𝑉)𝑑–𝑉 =

∫
–𝑉
𝜌 ¤𝑞𝑑–𝑉 + viscous terms (5.66)

We now put everything into one integral, and as before because this
equation must apply to any control volume in the fluid the integrand
must be zero everywhere. This gives the differential form, where we
have used an inviscid assumption:

𝜕𝜌𝜖

𝜕𝑡
+ ∇ · (𝜌ℎ𝑇 ®𝑉) = 𝜌 ¤𝑞 (5.67)

Extra work terms, like shaft work can still be explicit added to this
equation.

The first term we can express in terms of total enthalpy:

𝜌𝜖 = 𝜌𝑒 + 𝜌
𝑉2

2

= 𝜌𝑒 + 𝜌
𝑉2

2 + 𝜌
𝑝

𝜌
− 𝑝

= 𝜌𝑒 + 𝜌
𝑉2

2 + 𝜌𝑝𝜈 − 𝑝

= 𝜌ℎ + 𝜌
𝑉2

2 − 𝑝

= 𝜌ℎ𝑇 − 𝑝

(5.68)

Substituting into the energy equation gives:

𝜕𝜌ℎ𝑇
𝜕𝑡

+ ∇ · (𝜌ℎ𝑇 ®𝑉) = 𝜕𝑝

𝜕𝑡
+ 𝜌 ¤𝑞 (5.69)

To make this equation more useful we expand the derivatives:

ℎ𝑇
𝜕𝜌

𝜕𝑡
+ 𝜌

𝜕ℎ𝑇
𝜕𝑡

+ ℎ𝑇∇ · (𝜌 ®𝑉) + ∇ℎ𝑇 · 𝜌 ®𝑉 =
𝜕𝑝

𝜕𝑡
+ 𝜌 ¤𝑞 (5.70)
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The first and third terms go to zero from the continuity equation
(Eq. 1.64).

𝜌
𝜕ℎ𝑇
𝜕𝑡

+ ∇ℎ𝑇 · 𝜌 ®𝑉 =
𝜕𝑝

𝜕𝑡
+ 𝜌 ¤𝑞 (5.71)

If steady and adiabatic, good assumptions for much of aerodynamics,
the equations simplifies considerably to:

∇ℎ𝑇 · 𝜌 ®𝑉 (5.72)

In words, this equation means that total enthalpy is constant along a
streamline. This result is a much simpler form of the energy equation:

ℎ𝑇1 = ℎ𝑇2 (5.73)

or

ℎ1 +
𝑉2

1
2 = ℎ2 +

𝑉2
2
2 (5.74)

This is a form of Bernoulli’s equation, but for a compressible flow.
It comes with all of the same limitations (except incompressibility):
steady, along a streamline, no work or heat transfer, inviscid. The
freestream for many compressible flow scenarios comes from a reservoir
of constant total enthalpy, and in those cases the total enthalpy is
constant everywhere. The simplicity of this equation makes it highly
useful for many compressible flows.

Because we have assumed adiabatic and invscid, the flow is isen-
tropic. Using Eq. 5.56 for constant entropy we see that:

𝑑ℎ = 𝜈𝑑𝑝 (5.75)

If we now invoke an incompressibility assumption we can integrate
both sides to get:

ℎ2 − ℎ1 =
1
𝜌
(𝑝2 − 𝑝1) (5.76)

Substituting this into Section 5.1.7, and multiplying through by 𝜌 gives
the classic Bernoulli equation:

𝑝1 +
1
2𝜌𝑉

2
1 = 𝑝2 +

1
2𝜌𝑉

2
2 (5.77)

or
𝑝𝑇1 = 𝑝𝑇2 (5.78)

where 𝑝𝑇 is the total pressure. Note that this makes use of the incom-
pressible definition of total pressure, a definition that is not applicable
for a compressible flow. We will learn what total pressure looks like for
a compressible flow later in this chapter.
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sound wave

Fig. 5.5 A sound wave, or infinitely
weak disturbance, across which the
fluid properties change by some dif-
ferential amount.

5.1.6 Speed of Sound

A sound wave is an infinitesimally weak pressure wave. That means
that the flow properties may change, isentropically, by some differential
amount across a sound wave as pictured in Fig. 5.5 We will denote 𝑎
as the speed of sound, or in other words the speed that a sound wave
moves in the fluid.

We now consider a small control volume whose sides are parallel to
the sound wave. Thus, the fluid enters one side of the control volume,
and exits on the other side of the sound wave. Applying a mass balance
across the sound wave yields:

𝜌𝑎𝐴 = (𝜌 + 𝑑𝜌)(𝑎 + 𝑑𝑎)𝐴 (5.79)

where 𝐴 is some arbitrary cross-sectional size based on the control
volume size. Cancelling out the area term, expanding the products on
the right hand side, and neglecting the product of differential terms
gives:

𝜌𝑎 = 𝜌𝑎 + 𝑎𝑑𝜌 + 𝜌𝑑𝑎 (5.80)

⇒ 𝑑𝑎 = − 𝑎
𝜌
𝑑𝜌 (5.81)

Next, we apply a momentum balance across the sound wave. Be-
cause a sound wave is an isentropic disturbance there are no viscous
terms.

𝑝𝐴 + 𝜌𝑎2𝐴 = (𝑝 + 𝑑𝑝)𝐴 + (𝜌 + 𝑑𝜌)(𝑎 + 𝑑𝑎)2𝐴 (5.82)
0 = 𝑑𝑝 + 2𝜌𝑎𝑑𝑎 + 𝑎2𝑑𝜌 (5.83)

We substitute in the results from Eq. 5.81

0 = 𝑑𝑝 − 2𝑎2𝑑𝜌 + 𝑎2𝑑𝜌 (5.84)
⇒ 𝑑𝑝 = 𝑎2𝑑𝜌 (5.85)

The result is:

𝑎 =

√(
𝜕𝑝

𝜕𝜌

)
𝑠

(5.86)

The subscript 𝑠 denotes that this is the partial derivative at constant
entropy (i.e., an isentropic process). From Eq. 5.61 we see that for a
calorically perfect isentropic process we can write:

𝑝

𝜌𝛾 = constant (5.87)
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Taking derivatives and substituting into the speed of sound gives:

𝑎 =

√
𝛾𝑝

𝜌
(5.88)

For an ideal gas, which is applicable since we already made a more
restrictive calorically perfect assumption, we have the following expres-
sion for the speed of sound:

𝑎 =
√
𝛾𝑅𝑇 (5.89)

Thus, we see that for a calorically perfect gas, the speed of sound is
only a function of temperature.

This formula allows for a more convenient form of dynamic pressure
in compressible flows.

𝑞 =
1
2𝜌𝑉

2

=
1
2𝜌𝑀

2𝑎2

=
1
2𝜌𝑀

2 𝛾𝑝

𝜌

=
𝛾

2 𝑝𝑀
2

(5.90)

This latter form is typically a more convenient representation of dynamic
pressure for compressible flows:

𝑞 =
𝛾

2 𝑝𝑀
2 (5.91)

5.1.7 Total (Stagnation) Quantities

Stagnation pressure, or total pressure, is the equivalent pressure we would
obtain if we took a point in the fluid and isentropically slowed it to
stagnation. Note that total pressure is a property of the fluid at every
point. It is well defined at every point in the fluid whether or not the
point in question is at a stagnation point or whether or not the flow is
isentropic.

Using a form of the energy equation appropriate for an isentropic
process

ℎ1 +
𝑉1
2 = ℎ2 +

𝑉2
2 (5.92)

For a calorically perfect gas we can substitute in Eq. 5.36:

𝑐𝑝𝑇1 +
𝑉1
2 = 𝑐𝑝𝑇2 +

𝑉2
2 (5.93)
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Now let’s consider condition 1 our hypothetical stagnation condition,
and condition 2 the flow conditions at an arbitrary point in the fluid:

𝑐𝑝𝑇𝑇 = 𝑐𝑝𝑇 + 𝑉

2 (5.94)

where 𝑇𝑇 is called the total temperature. Rearranging and using the
relationship between 𝑐𝑝 and the other gas constants Eq. 5.42 as well as
the equation for the speed of sound (Eq. 5.89):

𝑇𝑇

𝑇
= 1 + (𝛾 − 1)

2 𝑀2 (5.95)

Using the isentropic relations (Eq. 5.61) then gives us expressions for
total pressure and total density:

𝑝𝑇

𝑝
=

(
1 + 𝛾 − 1

2 𝑀2
)𝛾/(𝛾−1)

(5.96)

𝜌𝑇
𝜌

=

(
1 + 𝛾 − 1

2 𝑀2
)1/(𝛾−1)

(5.97)

Note that the compressible definition for total pressure (Eq. 5.96) is very
different then the incompressible counterpart (𝑝𝑇 = 𝑝 + 1

2𝜌𝑉
2)

5.1.8 Viscosity

Classical thermodynamics does not provide an expression for viscosity
in terms of other thermodynamic variables. Instead we rely on kinetic
theory and experiments. For a gas, a commonly-used model is called
Sutherland’s Law:

𝜇(𝑇) = 𝜇𝑟𝑒 𝑓

(
𝑇

𝑇𝑟𝑒 𝑓

)3/2 𝑇𝑟𝑒 𝑓 + 𝑆
𝑇 + 𝑆 (5.98)

where

𝜇𝑟𝑒 𝑓 = 1.716 × 10−5 kg/(m·s) (5.99)
𝑇𝑟𝑒 𝑓 = 273.15 K (5.100)
𝑆 = 110.4 K (5.101)

Note that the viscosity is only a function of temperature.
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5.2 Full Potential Equation

We continue with the same assumption of irrotational flow:

∇ ×
⇀

𝑉 = 0 (5.102)

but now allow the fluid to be compressible. Irrotational flow can still
be a useful approximation for some compressible flows. Shock waves
are an irreversible process and so are not irrotational, but potential flow
theory can permit infinitely weak shocks (isentropic Mach waves).

If compressible, the continuity equation becomes:

∇ · (𝜌
⇀

𝑉) = 0 (5.103)

and the momentum equation, if invsicid as is necessary for irrotational
flow, is:

𝜌
⇀

𝑉 · ∇
⇀

𝑉 = −∇𝑝 (5.104)

Using a vector identity we can expand the left-hand side as follows, and
cross out the second term because of the irrotationality assumption.

𝜌

(
1
2∇(

⇀

𝑉 ·
⇀

𝑉) −
⇀

𝑉 ×����(∇ ×
⇀

𝑉)
)
= −∇𝑝 (5.105)

Because we have assumed irrotational flow, there is no viscosity and no
heat transfer, and the energy equation reduces to the isentropic relation
(Eq. 5.61):

𝑝

𝜌𝛾 = 𝑘 (5.106)

where 𝑘 is a constant. We take derivatives of the isentropic relationship
and insert in the definition of the speed of sound (Eq. 5.88):

∇𝑝 = 𝑘𝛾𝜌𝛾−1∇𝜌 (5.107)

= 𝛾
𝑝

𝜌
∇𝜌 (5.108)

= 𝑎2∇𝜌 (5.109)

We substitute this result into the momentum equation:

𝜌
1
2∇(

⇀

𝑉 ·
⇀

𝑉) = −𝑎2∇𝜌 , (5.110)

and divide by 𝜌 on both sides:

1
2∇(

⇀

𝑉 ·
⇀

𝑉) = −𝑎2 ∇𝜌
𝜌
. (5.111)
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Next, we take the dot product with velocity on both sides of the
equation.

⇀

𝑉 ·
(
1
2∇(

⇀

𝑉 ·
⇀

𝑉)
)
= −𝑎2 ⇀

𝑉 · ∇𝜌
𝜌

(5.112)

If we expand the continuity equation via the chain rule:

∇𝜌 ·
⇀

𝑉 + 𝜌(∇ ·
⇀

𝑉) = 0
⇀

𝑉 · ∇𝜌 = −𝜌(∇ ·
⇀

𝑉)
(5.113)

we see that we can substitute this term into the right side of the
momentum equation:

⇀

𝑉 ·
(
1
2∇(

⇀

𝑉 ·
⇀

𝑉)
)
= 𝑎2∇ · ®𝑉 (5.114)

Rearranging gives:

𝑎2∇ · ®𝑉 − 1
2

⇀

𝑉 · ∇(
⇀

𝑉 ·
⇀

𝑉) = 0 (5.115)

Finally, we make the substitution ®𝑉 = ∇𝜙 for the potential function.

∇2𝜙 − 1
𝑎(𝜙)2

(
1
2∇𝜙 · ∇(∇𝜙 · ∇𝜙)

)
= 0 (5.116)

This equation is called the (steady) full potential equation. It isn’t used
directly very much anymore as modern numerical methods for solving
the Euler equations are just as easy to work with and don’t carry the
limitations of isentropic or irrotational flow. However, this equation
does form the basis of various small disturbance theories as we will
see in this chapter. Note that for an incompressible flow the speed of
sound is infinite (𝑎 → ∞) and the above expression reduces to Laplace’s
equation as expected:

∇2𝜙 = 0 (5.117)

Actually, we haven’t fully expressed the equation. We wrote that the
speed of sound 𝑎 is a function of 𝜙 but did not explicitly show this. It
makes the above expression less clear, but below we show how this can
be done. For a steady, adiabatic compressible flow we shows that total
enthalpy is conserved along a streamline (Section 5.1.7). If we have a
constant freestream, as is almost always the case for potential flow, then
the upstream enthalpy is the same for every streamline and so we can
say that the total enthalpy is constant everywhere. The assumptions of
steady flow and constant total enthalpy are not actually necessary to
derive the full potential equations. There is an unsteady version, but
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the derivation is quite a bit longer and not needed for our purposes. If
total enthalpy is constant we can write:

ℎ + 𝑉2

2 = const (5.118)

𝑐𝑝𝑇 + 1
2 (

®𝑉 · ®𝑉) = const (5.119)

𝛾𝑅

𝛾 − 1𝑇 + 1
2 (

®𝑉 · ®𝑉) = const (5.120)

𝑎2

𝛾 − 1 + 1
2 (

®𝑉 · ®𝑉) = const (5.121)

(5.122)

where 𝑐𝑝 is specific heat at constant pressure, and we have assumed a
calorically perfect gas (Eq. 5.36), and used Eqs. 5.42 and 5.89. We now
apply this equation at two points, the freesteam and an arbitrary point
in the fluid.

𝑎2

𝛾 − 1 + 1
2 (

®𝑉 · ®𝑉) = 𝑎2
∞

𝛾 − 1 + 1
2𝑉

2
∞ (5.123)

or rearranging:

𝑎2 = 𝑎2
∞ − 𝛾 − 1

2 (𝑉2
∞ − ®𝑉 · ®𝑉) (5.124)

Or in terms of the potential function.

𝑎2 = 𝑎2
∞ − 𝛾 − 1

2 (𝑉2
∞ − ∇𝜙 · ∇𝜙) (5.125)

This equations gives the desired relationship, 𝑎(𝜙), and thus we see
that the full potential equation only depends on one unknown: 𝜙.

5.3 Small Disturbance Equations

In the remainder of this chapter we will need to make use of partial
derivatives many times. In order to simplify notation we will often use
the following:

𝜙𝑥 ≡
𝜕𝜙

𝜕𝑥
(5.126)

𝜙𝑥𝑥 ≡
𝜕2𝜙

𝜕𝑥2 (5.127)

(5.128)

We now will introduce the small disturbance equations. We align
our axis with the freestream, and assume that a body in the flow creates
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only small disturbances relative to freestream values.

𝜙 = 𝑉∞𝑥 + 𝜙̂ (5.129)

where 𝜙̂ is a small disturbance in 𝜙. In terms of velocities this means
that:

𝑢 = 𝑉∞ + 𝑢̂
𝑣 = 𝑣̂

𝑤 = 𝑤̂

(5.130)

where 𝑢̂ , 𝑣̂ , 𝑤̂ are disturbance velocities.
We start with the velocity from the full potential equation (Eq. 5.115)

and introduce the perturbation velocities. It will be easier to do this one
term at a time, where again we will use the subscripts to denote partial
derivatives. We will also temporarily drop the hats for convenience

∇ · ®𝑉 = 𝑢𝑥 + 𝑣𝑦 + 𝑤𝑧 (5.131)

®𝑉 · ®𝑉 = 𝑉2
∞ + 2𝑉∞𝑢 + 𝑢2 + 𝑣2 + 𝑤2 (5.132)

∇( ®𝑉 · ®𝑉) =

2𝑉∞𝑢𝑥 + 2𝑢𝑢𝑥 + 2𝑣𝑣𝑥 + 2𝑤𝑤𝑥
2𝑉∞𝑢𝑦 + 2𝑢𝑢𝑦 + 2𝑣𝑣𝑦 + 2𝑤𝑤𝑦

2𝑉∞𝑢𝑧 + 2𝑢𝑢𝑧 + 2𝑣𝑣𝑧 + 2𝑤𝑤𝑧

 (5.133)

1
2
®𝑉 · ∇( ®𝑉 · ®𝑉) = (𝑉∞ + 𝑢)(𝑉∞𝑢𝑥 + 𝑢𝑢𝑥 + 𝑣𝑣𝑥 + 𝑤𝑤𝑥)+

𝑣(𝑉∞𝑢𝑦 + 𝑢𝑢𝑦 + 𝑣𝑣𝑦 + 𝑤𝑤𝑦)+
𝑤(𝑉∞𝑢𝑧 + 𝑢𝑢𝑧 + 𝑣𝑣𝑧 + 𝑤𝑤𝑧)

(5.134)

We also need to substitute the perturbation into the definition of the
speed of sound (Eq. 5.124):

𝑎2 = 𝑎2
∞ − 𝛾 − 1

2 (𝑉2
∞ −𝑉2

∞ + 2𝑉∞𝑢 + 𝑢2 + 𝑣2 + 𝑤2) (5.135)

= 𝑎2
∞ − 𝛾 − 1

2 (2𝑉∞𝑢 + 𝑢2 + 𝑣2 + 𝑤2) (5.136)

(5.137)

Because 𝑢, 𝑣, 𝑤 are all small, their products are even smaller and do we
can drop these terms. The derivatives of 𝑢, 𝑣, 𝑤 may not necessarily
be small, and so we cannot drop products of derivatives times the
velocities yet.

1
2
®𝑉 · ∇( ®𝑉 · ®𝑉) ≈ 𝑉2

∞𝑢𝑥 +𝑉∞𝑢𝑢𝑥 +𝑉∞𝑣𝑣𝑥 +𝑉∞𝑤𝑤𝑥

+𝑉∞𝑢𝑢𝑥 +𝑉∞𝑣𝑢𝑦 +𝑉∞𝑤𝑢𝑧

(5.138)
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and
𝑎2 ≈ 𝑎2

∞ − (𝛾 − 1)𝑉∞𝑢 (5.139)

Substituting all of this into the full potential equations (Eq. 5.116) gives:

(𝑎2
∞−(𝛾−1)𝑉∞𝑢)(𝑢𝑥+𝑣𝑦+𝑤𝑧)−𝑉2

∞𝑢𝑥−𝑉∞(2𝑢𝑢𝑥+𝑣𝑣𝑥+𝑤𝑤𝑥+𝑣𝑢𝑦+𝑤𝑢𝑧) = 0
(5.140)

Collecting like terms yields:

(𝑎2
∞ − (𝛾 − 1)𝑉∞𝑢 −𝑉2

∞ − 2𝑉∞𝑢)𝑢𝑥 + 𝑎2
∞(𝑣𝑦 + 𝑤𝑧) − (𝛾 − 1)𝑉∞𝑢(𝑣𝑦 + 𝑤𝑧)
−𝑉∞(𝑣𝑣𝑥 + 𝑤𝑤𝑥 + 𝑣𝑢𝑦 + 𝑤𝑢𝑧) = 0

(5.141)
We now simplify and divide through by 𝑎2

∞.(
1 −𝑀2

∞ − (𝛾 + 1)𝑀2
∞
𝑢

𝑉∞

)
𝑢𝑥 + 𝑣𝑦 + 𝑤𝑧 − (𝛾 − 1)𝑀2

∞
𝑢

𝑉∞
(𝑣𝑦 + 𝑤𝑧)

−𝑀2
∞

1
𝑉∞

(𝑣𝑣𝑥 + 𝑤𝑤𝑥 + 𝑣𝑢𝑦 + 𝑤𝑢𝑧) = 0
(5.142)

Now we can see that every term has a velocity derivative term, and
so those terms that are also multiplied by an additional perturbation
velocity (𝑢, 𝑣, 𝑤) will be much smaller. However, there is one term we
cannot drop. We see that when the Mach number is close to 1 then the
term 1 −𝑀2

∞ is small and so the remaining term in those parenthesis
will be significant and can’t be dropped. On the other hand, all the
terms from 𝑢𝑣𝑦 onward are small for all Mach numbers and so we can
drop them. (

1 −𝑀2
∞ − (𝛾 + 1)𝑀2

∞
𝑢

𝑉∞

)
𝑢𝑥 + 𝑣𝑦 + 𝑤𝑧 = 0 (5.143)

We can now write this in terms of the potential.(
1 −𝑀2

∞ − (𝛾 + 1)𝑀2
∞
𝜙̂𝑥
𝑉∞

)
𝜙̂𝑥𝑥 + 𝜙̂𝑦𝑦 + 𝜙̂𝑧𝑧 = 0 (5.144)

This equation is called the transonic small disturbance equation (TSD). As
discussed, the 𝜙𝑥 term is small unless the Mach number is close to one
(hence the transonic in the name), but for Mach numbers not close to
one we will be able to drop the term.

In a similar process we can compute the pressure coefficient for
small disturbances in a compressible flow. We cannot use the simplified
𝐶𝑝 calculation in terms of velocities as that used Bernoulli’s equation
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and does not apply for compressible flow. Instead, we go back to the
original definition.

𝐶𝑝 =
𝑝 − 𝑝∞
1
2𝜌∞𝑉

2
∞

(5.145)

For compressible flows it is more convenient to use a different form of the
dynamic pressure in terms of the Mach number (Eq. 5.91).Substituting
this into the definition of the pressure coefficient gives:

𝐶𝑝 =

(
𝑝

𝑝∞
− 1

)
2

𝛾𝑀2
∞

(5.146)

Now we need to go back to our energy equation (Eq. 5.119), which we
apply between an arbitrary location and at freestream.

𝑐𝑝𝑇 + 1
2
®𝑉 · ®𝑉 = 𝑐𝑝𝑇∞ + 𝑉2

∞
2 (5.147)

Solving for 𝑇/𝑇∞:

𝑇

𝑇∞
= 1 + 1

2𝑇∞𝑐𝑝

(
𝑉2
∞ − ®𝑉 · ®𝑉

)
(5.148)

Using the definition 𝑐𝑝 = 𝛾𝑅/(𝛾 − 1) and substituting in the speed of
sound (𝑎2 = 𝛾𝑅𝑇) gives:

𝑇

𝑇∞
= 1 + 𝛾 − 1

2𝑎2
∞

(
𝑉2
∞ − ®𝑉 · ®𝑉

)
(5.149)

Now we make use of the isentropic relationships between pressure and
tempreature (Eq. 5.61): Applying to the above equation and substituting
into the pressure coefficient gives:

𝐶𝑝 =

[(
1 + (𝛾 − 1)

2𝑎2
∞

(
𝑉2
∞ − ®𝑉 · ®𝑉

))𝛾/(𝛾−1)
− 1

]
2

𝛾𝑀2
∞

(5.150)

So far, everything is exact, but now we can introduce the small pertur-
bation assumption:

𝑉2
∞ − ®𝑉 · ®𝑉 = 𝑉2

∞ − (𝑉2
∞ + 2𝑉∞𝑢̂ + 𝑢̂2 + 𝑣̂2 + 𝑤̂2) (5.151)

= −(2𝑉∞𝑢̂ + 𝑢̂2 + 𝑣̂2 + 𝑤̂2) (5.152)

Substituting that into the pressure coefficient gives:

𝐶𝑝 ≈
[(

1 − (𝛾 − 1)
2𝑎2

∞
(2𝑉∞𝑢̂ + 𝑢̂2 + 𝑣̂2 + 𝑤̂2)

)𝛾/(𝛾−1)
− 1

]
2

𝛾𝑀2
∞

(5.153)



5 Compressible Flow 167

Now, we make use of the binomial approximation, which is:

(1 + 𝑥)𝛼 ≈ 1 + 𝛼𝑥 + 1
2𝛼(𝛼 − 1)𝑥2 + . . . (5.154)

This equation can be found from a Taylor’s series and applies when 𝑥 is
small relative to 1. In our case the ‘x’ term contains only perturbation
velocities and so is small by definition.

𝐶𝑝 ≈
[
1 − 𝛾

(𝛾 − 1)
(𝛾 − 1)

2𝑎2
∞

(2𝑉∞𝑢̂ + 𝑢̂2 + 𝑣̂2 + 𝑤̂2)

+1
2

𝛾

(𝛾 − 1)
1

(𝛾 − 1)
(𝛾 − 1)2

4𝑎4
∞

(2𝑉∞𝑢̂ + 𝑢̂2 + 𝑣̂2 + 𝑤̂2)2 − 1
]

2
𝛾𝑀2

∞
(5.155)

We will retain up to second-order terms:

𝐶𝑝 ≈
[
− 𝛾

2𝑎2
∞
(2𝑉∞𝑢̂ + 𝑢̂2 + 𝑣̂2 + 𝑤̂2) + 1

2
𝛾

𝑎4
∞
𝑉2
∞𝑢̂

2
]

2
𝛾𝑀2

∞

= −2 𝑢̂

𝑉∞
−

(
𝑢̂2 + 𝑣̂2 + 𝑤̂2

𝑉2
∞

)
+𝑀2

∞

(
𝑢̂

𝑉∞

)2 (5.156)

Rearranging like terms gives our final result:

𝐶𝑝 = −
[

2𝑢̂
𝑉∞

+ (1 −𝑀2
∞)

(
𝑢̂

𝑉∞

)2
+

(
𝑣̂

𝑉∞

)2
+

(
𝑤̂

𝑉∞

)2
]

(5.157)

Like the full potential equation, the TSD equation is by itself no
longer of much interest (though it was of significant interest historically).
Instead, we will look at the subsonic and supersonic cases separately
where the Mach number is away from one and the 𝜙𝑥 term can be
dropped. Some useful insights and formulas will result for these two
cases.

5.4 Subsonic Small Disturbance

If the Mach number is less than approximately 0.8, and only small
disturbances are introduced in the flow field, then the TSD equation
(Eq. 5.144) can be reduced to:(

1 −𝑀2
∞

)
𝜙̂𝑥𝑥 + 𝜙̂𝑦𝑦 + 𝜙̂𝑧𝑧 = 0 (5.158)

The boundary conditions for inviscid flow are flow tangency, where we
use the function 𝑓 (𝑥) to represent the shape of the body:

𝑑𝑓

𝑑𝑥
=

𝑣̂

𝑉∞ + 𝑢̂ ≈ 𝑣̂

𝑉∞
(5.159)
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or
𝑉∞

𝑑𝑓

𝑑𝑥
= 𝑣̂ = 𝜙̂𝑦 (5.160)

If we drop all second order terms from the small disturbance pressure
coefficient equation (Eq. 5.157) we have:

𝐶𝑝 = − 2𝑢̂
𝑉∞

= − 2
𝑉∞

𝜙̂𝑥 (5.161)

We repeat those three equations, without the hat to simplify the
notation, and we write out the partial derivatives to make the following
derivation clearer. (

1 −𝑀2
∞

) 𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑦2 +
𝜕2𝜙

𝜕𝑧2 = 0 (5.162)

𝑉∞
𝑑𝑓

𝑑𝑥
=

𝜕𝜙

𝜕𝑦
(5.163)

𝐶𝑝 = − 2
𝑉∞

𝜕𝜙

𝜕𝑥
(5.164)

The first equation is almost Laplace’s equation, but not quite. Perhaps
with a change of variables we can transform it to Laplace’s equation.
We introduce the following change of variables, where 𝐴, 𝛽 and 𝐶

are constants (we use 𝛽 as this will be an important constant, and 𝛽
is conventionally used for this purpose). We scale the potential, and
shape by some unknown constant. We choose 𝑥 as the one variable
that doesn’t scale (this is general as all other scaling is relative to this).
Recall that the the body is aligned in the 𝑥 direction, so we scale the
other coordinate directions by some other unknown constant (1/𝛽).

𝜙 = 𝐴𝜙̄ (5.165)
𝑥 = 𝑥̄ (5.166)

𝑦 =
1
𝛽
𝑦̄ (5.167)

𝑧 =
1
𝛽
𝑧̄ (5.168)

𝑓 = 𝐶 𝑓 (5.169)

As an example, using the chain rule, and the above change of
variables, gives the following for the derivative with respect to 𝑦:

𝜕𝜙

𝜕𝑦
=

𝜕𝜙

𝜕𝑦̄

𝑑𝑦̄

𝑑𝑦
=

𝜕𝜙

𝜕𝑦̄
𝛽 =

𝜕𝜙̄

𝜕𝑦̄
𝐴𝛽 (5.170)
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Similarly, the the second derivative of 𝑦 we get:

𝜕2𝜙

𝜕𝑦2 =
𝜕

𝜕𝑦

(
𝐴𝛽

𝜕𝜙̄

𝜕𝑦̄

)
= 𝐴𝛽

𝜕

𝜕𝑦̄

(
𝜕𝜙̄

𝜕𝑦

)
= 𝐴𝛽

𝜕

𝜕𝑦̄

(
𝜕𝜙̄

𝜕𝑦̄

𝑑𝑦̄

𝑑𝑦

)
= 𝐴𝛽2 𝜕

2𝜙̄

𝜕𝑦̄2

(5.171)
If we make the change of variable substitutions into the governing

equation we get:(
1 −𝑀2

∞

)
�𝐴𝜙̄𝑥̄ 𝑥̄ +�𝐴𝛽

2𝜙̄ 𝑦̄ 𝑦̄ +�𝐴𝛽
2𝜙̄𝑧̄ 𝑧̄ = 0 (5.172)

If we choose to define 𝛽 as:

𝛽 =

√
1 −𝑀2

∞ (5.173)

then we get
𝜙̄𝑥̄ 𝑥̄ + 𝜙̄ 𝑦̄ 𝑦̄ + 𝜙̄𝑧̄ 𝑧̄ = 0 (5.174)

which is Laplace’s equation! This means that through a change of
coordinates we can continue to use Laplace’s equation for compressible
potential flow as long as the disturbances are small and the Mach
number is not too close to 1.

Next, let’s check how this impacts our boundary condition. The
change of coordinates gives:

𝑉∞𝐶
𝑑 𝑓

𝑑𝑥̄
= 𝐴𝛽

𝜕𝜙̄

𝜕𝑦̄
(5.175)

Ideally, we don’t want to modify the geometry when using the coordi-
nate transformation so we would like 𝐶 = 1 (Eq. 5.169), and we would
like the ratio above 𝐶/(𝐴𝛽) to also equal 1 so that we don’t have to
stretch the geometry when applying the boundary condition. If 𝐶 = 1
that means we require 𝐴 = 1/𝛽. By choosing that set of constants we
can use the original body shape without modification.

Finally, we need to check how our coordinate transformation impacts
the computation of 𝐶𝑝 .

𝐶𝑝 = − 2
𝑉∞

𝐴
𝜕𝜙̄

𝜕𝑥̄
(5.176)

or since 𝐴 = 1/𝛽

𝐶𝑝 = − 2
𝑉∞

𝜕𝜙̄

𝜕𝑥̄

1
𝛽

(5.177)
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The result of the coordinate system change is:

𝜕2𝜙̄

𝜕𝑥̄2 +
𝜕2𝜙̄

𝜕𝑦̄2 +
𝜕2𝜙̄

𝜕𝑧̄2 = 0 (5.178)

𝑉∞
𝑑 𝑓

𝑑𝑥̄
=

𝜕𝜙̄

𝜕𝑦̄
(5.179)

𝐶𝑝 = − 2
𝑉∞

𝜕𝜙̄

𝜕𝑥̄

1√
1 −𝑀2

∞
(5.180)

If we compare this set of equations to those in the original coordinate
system (Eq. 5.162) we see that we successful transformed the governing
equation to Laplace’s equation, the boundary condition is unchanged,
and the resulting 𝐶𝑝 needs to be divided by 𝛽.

In other words, if we use the exact same process we used for solving
Laplace’s equation in incompressible flow (e.g., a panel method) all we
need to do is multiply our resulting 𝐶𝑝 by a correction factor:

𝐶𝑝 =
𝐶𝑝0√

1 −𝑀2
∞

(5.181)

where 𝐶𝑝0 is the pressure coefficient we would compute in the in-
compressible flow. This is called the Prandtl-Glauert correction or PG
correction for short.

Furthermore, because the lift coefficient, moment coefficient, and
lift curve slope are just integrals of pressure the same correction applies.
For example:

𝑐𝑙 =
𝑐𝑙0√

1 −𝑀2
∞

(5.182)

Note that the effect is that as the Mach number is increased, the lift and
moment coefficients are increased as well.

One unnecessary limitation in the above derivation is that we only
retained the linear terms in the small disturbance pressure coefficient
equation (Eq. 5.157). Retaining additional terms and following a similar
process gives the Karman-Tsien correction, which is not much more
complicated but produces more accurate results.

𝐶𝑝 =

[
𝛽

𝐶𝑝0
+ 𝑀2

∞
2(1 + 𝛽)

]−1

(5.183)

Again, remember the main limitation (besides those of potential
flow) is the assumption of small disturbances. Most of the time aerody-
namic bodies are designed to only introduce small disturbances, indeed
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this is what we imply we say a vehicle has an aerodynamic shape.
However, as the Mach number is increased geometries need to become
increasingly thin to prevent shock waves and large disturbances. Thus,
these correction methods work reasonably well for moderate Mach
numbers (near 0.5), but may be quite inaccurate as we approach Mach
0.7–0.8 and above depending on the geometry.

5.5 Supersonic Thin Airfoil Theory

Starting from the TSD equation (Eq. 5.144), we can also drop the
higher order term if the Mach number is approximately above 1.2. The
resulting equation is

−𝛽2𝜙̂𝑥𝑥 + 𝜙̂𝑦𝑦 + 𝜙̂𝑧𝑧 = 0 (5.184)

where
𝛽 =

√
𝑀2

∞ − 1 (5.185)

Note that we changed the definition of 𝛽 for the supersonic case. This
is no longer an elliptic PDE but rather is a hyperbolic one. Like the
integral boundary layer equations, that means that the information
flow is directional. Disturbances cannot go upstream, as is physically
consistent with the behavior of supersonic flow (information travels
with the speed of sound).

In this section we will focus on airfoils (i.e., 2D):

−𝛽2𝜙̂𝑥𝑥 + 𝜙̂𝑦𝑦 = 0 (5.186)

This equation has the exact same form as the one-dimensional wave
equation, which has known solutions:

𝜙̂ = 𝐹(𝑥 − 𝛽𝑦) + 𝐺(𝑥 + 𝛽𝑦) (5.187)

where 𝐹 and 𝐺 are arbitrary functions.
A visualization of the flow behavior is shown in Fig. 5.6. The lines

are often referred to as characteristics. Along a characteristic the flow
properties are constant. Physically, they are Mach waves or infinitely
weak (isentropic) shock waves. On the upper surface only the 𝐹 function
applies, while 𝐺 applies on the lower surface (because Mach waves
only travel downstream).

Recall that the boundary condition is approximately given as:

𝑉∞
𝑑𝑦

𝑑𝑥
=
𝑑𝜙̂

𝑑𝑦
(5.188)
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Fig. 5.6 Characteristic lines in a small
disturbance supersonic flow field.

Applying this on the upper surface, and using thin-airfoil theory
assumptions, as is consistent with small disturbances, yields:

𝑉∞

(
𝑑𝑦

𝑑𝑥

)
𝑢

=

(
𝑑𝜙̂

𝑑𝑦

)
𝑦=0+

= −𝛽𝐹′(𝑥) (5.189)

If we solve this for 𝐹′ we have:

𝐹′(𝑥) = −𝑉∞
𝛽

(
𝑑𝑦

𝑑𝑥

)
𝑢

(5.190)

Recall that the pressure coefficient (dropping higher order terms) is
given by (Eq. 5.161):

𝐶𝑝 = − 2
𝑉∞

(
𝜕𝜙̂

𝜕𝑥

)
𝑦=0

(5.191)

Evaluating on the upper surface gives:

𝐶𝑝 = − 2
𝑉∞

𝐹′(𝑥) (5.192)

Using the expression for 𝐹′ above:

𝐶𝑝 =
2
𝛽

𝑑𝑦

𝑑𝑥
(5.193)

The derivative 𝑑𝑦/𝑑𝑥 is the local slope of the airfoil, which we call 𝜃,
and 𝛽 was defined previously:

𝐶𝑝 =
2𝜃√
𝑀2

∞ − 1
(5.194)

This expression gives us a quick and easy way to estimate the pressure
distribution on a supersonic airfoil with small disturbances. All that is
needed is to know the airfoil shape (from which we get the slope 𝜃) and
the freestream Mach number. If we followed the same procedure for
the lower surface we would get the same expression. Keep in mind that
𝜃 is negative for the lower surface as the slope goes the other direction.
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As we did before with airfoils, we will separate the geometric
description into a thickness distribution, a camber distribution, and an
angle of attack. Specifically, we define the upper and lower surfaces as
a superposition of camber and thickness distribution as follows:

𝑦𝑢(𝑥) = 𝑦𝑐(𝑥) +
1
2 𝑦𝑡(𝑥) (5.195)

𝑦𝑙(𝑥) = 𝑦𝑐(𝑥) −
1
2 𝑦𝑡(𝑥) (5.196)

Using the formula for the local pressure coefficient:

𝐶𝑝𝑢 =
2√

𝑀2
∞ − 1

(
−𝛼 +

𝑑𝑦𝑢

𝑑𝑥

)
(5.197)

𝐶𝑝 𝑙 =
2√

𝑀2
∞ − 1

(
𝛼 − 𝑑𝑦𝑙

𝑑𝑥

)
(5.198)

The negative sign results from the way that 𝜃 is defined. Substituting
in the camber and thickness distributions:

𝐶𝑝𝑢 =
2√

𝑀2
∞ − 1

(
−𝛼 + 𝑑𝑦𝑐

𝑑𝑥
+ 1

2
𝑑𝑦𝑡

𝑑𝑥

)
(5.199)

𝐶𝑝 𝑙 =
2√

𝑀2
∞ − 1

(
𝛼 − 𝑑𝑦𝑐

𝑑𝑥
+ 1

2
𝑑𝑦𝑡

𝑑𝑥

)
(5.200)

The definition of the (inviscid) normal force coefficient is:

𝑐𝑛 =
1
𝑐

∫ 𝑐

0
(𝐶𝑝 𝑙 − 𝐶𝑝𝑢)𝑑𝑥 (5.201)

Substituting in the result from above gives:

𝑐𝑛 =
2√

𝑀2
∞ − 1

1
𝑐

∫ 𝑐

0
(2𝛼 − 2

𝑑𝑦𝑐

𝑑𝑥
)𝑑𝑥 (5.202)

=
2√

𝑀2
∞ − 1

1
𝑐

(
2𝛼

∫ 𝑐

0
𝑑𝑥 − 2

∫ 𝑐

0

𝑑𝑦𝑐

𝑑𝑥
𝑑𝑥

)
(5.203)

=
2√

𝑀2
∞ − 1

1
𝑐

(
2𝛼𝑐 − 2 𝑦𝑐 |𝑐0

)
(5.204)

=
4𝛼√
𝑀2

∞ − 1
(5.205)

The definition of the (inviscid) axial force coefficient is:

𝑐𝑎 =
1
𝑐

∫ 𝑐

0

(
𝐶𝑝𝑢

𝑑𝑦𝑢

𝑑𝑥
− 𝐶𝑝 𝑙

𝑑𝑦𝑙

𝑑𝑥

)
𝑑𝑥 (5.206)
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Substituting in:

𝑐𝑎 =
1
𝑐

∫ 𝑐

0

(
2√

𝑀2
∞ − 1

(
−𝛼 + 𝑑𝑦𝑐

𝑑𝑥
+ 1

2
𝑑𝑦𝑡

𝑑𝑥

) (
𝑑𝑦𝑐

𝑑𝑥
+ 1

2
𝑑𝑦𝑡

𝑑𝑥

)
− 2√

𝑀2
∞ − 1

(
𝛼 − 𝑑𝑦𝑐

𝑑𝑥
+ 1

2
𝑑𝑦𝑡

𝑑𝑥

) (
𝑑𝑦𝑐

𝑑𝑥
− 1

2
𝑑𝑦𝑡

𝑑𝑥

))
𝑑𝑥

(5.207)

Several terms appear in both expressions and so cancel out. Removing
those terms leaves us with:

𝑐𝑎 =
2√

𝑀2
∞ − 1

1
𝑐

∫ 𝑐

0

(
−2𝛼

𝑑𝑦𝑐

𝑑𝑥
+ 2

(
𝑑𝑦𝑐

𝑑𝑥

)2
+ 1

2

(
𝑑𝑦𝑡

𝑑𝑥

)2
)
𝑑𝑥 (5.208)

For the first term under the integral, 𝛼 is a constant and can be taken
out. We already saw that ∫ 𝑐

0

𝑑𝑦𝑐

𝑑𝑥
𝑑𝑥 = 0 (5.209)

and so that whole term is zero. We are left with:

𝑐𝑎 =
4√

𝑀2
∞ − 1

©­«
(
𝑑𝑦𝑐

𝑑𝑥

)2
+ 1

4

(
𝑑𝑦𝑡

𝑑𝑥

)2ª®¬ (5.210)

where we define

𝜁 =
1
𝑐

∫ 𝑐

0
𝜁(𝑥)𝑑𝑥 (5.211)

as a shorthand for convenience.
Finally, lift and drag are related to the normal and axial forces as

follows:

𝑐𝑙 = 𝑐𝑛 cos 𝛼 − 𝑐𝑎 sin 𝛼 (5.212)
𝑐𝑑 = 𝑐𝑛 sin 𝛼 + 𝑐𝑎 cos 𝛼 (5.213)

Using a small angle approximation, consistent with thin airfoil theory,
yields:

𝑐𝑙 ≈ 𝑐𝑛 − 𝑐𝑎𝛼 (5.214)
𝑐𝑑 ≈ 𝑐𝑛𝛼 + 𝑐𝑎 (5.215)

Conventionally, the 𝑐𝑎𝛼 term is neglected in the lift coefficient because
it is of much smaller magnitude than 𝑐𝑛 (𝑐𝑎 is small and 𝛼 is small so
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their product is very small). However, in the drag calculation both 𝑐𝑛𝛼
and 𝑐𝑎 are of similar magnitude.

𝑐𝑙 ≈ 𝑐𝑛 (5.216)
𝑐𝑑 ≈ 𝑐𝑛𝛼 + 𝑐𝑎 (5.217)

Thus:

𝑐𝑙 =
4𝛼√
𝑀2

∞ − 1

𝑐𝑑 =
4√

𝑀2
∞ − 1

©­«𝛼2 +
(
𝑑𝑦𝑐

𝑑𝑥

)2
+ 1

4

(
𝑑𝑦𝑡

𝑑𝑥

)2ª®¬
(5.218)

The (inviscid) pitching moment coefficient is:

𝑐𝑚𝑙𝑒 =
1
𝑐2

∫ 𝑐

0

( (
𝐶𝑝𝑢 − 𝐶𝑝 𝑙

)
𝑥 + 𝐶𝑝𝑢

𝑑𝑦𝑢

𝑑𝑥
𝑦𝑢 − 𝐶𝑝 𝑙

𝑑𝑦𝑙

𝑑𝑥
𝑦𝑙

)
𝑑𝑥 (5.219)

Making substitutions:

𝑐𝑚𝑙𝑒 =
1
𝑐2

2√
𝑀2

∞ − 1

∫ 𝑐

0

[(
−2𝛼 + 2

𝑑𝑦𝑐

𝑑𝑥

)
𝑥 +

(
−𝛼 + 𝑑𝑦𝑐

𝑑𝑥
+ 1

2
𝑑𝑦𝑡

𝑑𝑥

) (
𝑑𝑦𝑐

𝑑𝑥
+ 1

2
𝑑𝑦𝑡

𝑑𝑥

)
(𝑦𝑐 + 𝑦𝑡)−(

𝛼 − 𝑑𝑦𝑐

𝑑𝑥
+ 1

2
𝑑𝑦𝑡

𝑑𝑥

) (
𝑑𝑦𝑐

𝑑𝑥
− 1

2
𝑑𝑦𝑡

𝑑𝑥

)
(𝑦𝑐 − 𝑦𝑡)

]
𝑑𝑥

(5.220)
Removing terms that cancel:

𝑐𝑚𝑙𝑒 =
1
𝑐2

2√
𝑀2

∞ − 1

∫ 𝑐

0

[
−2𝛼𝑥 + 2

𝑑𝑦𝑐

𝑑𝑥
𝑥 + 𝑦𝑐

(
−2𝛼

𝑑𝑦𝑐

𝑑𝑥
+ 2

𝑑𝑦𝑐

𝑑𝑥

2
+ 1

2
𝑑𝑦𝑡

𝑑𝑥

2
)
+

𝑦𝑡

(
−𝛼 𝑑𝑦𝑡

𝑑𝑥
+ 2

𝑑𝑦𝑐

𝑑𝑥

𝑑𝑦𝑡

𝑑𝑥

)]
𝑑𝑥

(5.221)
Neglecting all second order terms:

𝑐𝑚𝑙𝑒 ≈
1
𝑐2

2√
𝑀2

∞ − 1

∫ 𝑐

0

[
−2𝛼𝑥 + 2

𝑑𝑦𝑐

𝑑𝑥
𝑥

]
𝑑𝑥 (5.222)

=
1
𝑐2

2√
𝑀2

∞ − 1

[
−2𝛼 𝑐

2

2 +
∫ 𝑐

0
2
𝑑𝑦𝑐

𝑑𝑥
𝑥𝑑𝑥

]
(5.223)

The second term we can integrate by parts:

𝑐𝑚𝑙𝑒 =
1
𝑐2

2√
𝑀2

∞ − 1

[
−𝛼𝑐2 + 2(𝑥𝑦𝑐)𝑐0 −

∫ 𝑐

0
𝑦𝑐𝑑𝑥

]
(5.224)
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Fig. 5.7 Diamond airfoil.

The second term is zero, leading to

𝑐𝑚𝑙𝑒 = − 2√
𝑀2

∞ − 1

[
𝛼 + 1

𝑐2

∫ 𝑐

0
𝑦𝑐𝑑𝑥

]
(5.225)

Substituting in the definition of the chord-averaged variable.

𝑐𝑚𝑙𝑒 = − 2√
𝑀2

∞ − 1

[
𝛼 + 𝑦𝑐

𝑐

]
(5.226)

The aerodynamic center can be computing by noting the the moment
at any other location can be found as:

𝑀′(𝑥) = 𝑀′
𝑙𝑒 + 𝐿

′𝑥 (5.227)

𝑐𝑚(𝑥) = 𝑐𝑚𝑙𝑒 + 𝑐𝑙
𝑥

𝑐
(5.228)

The definition of the aerodynamic center is the location where 𝑑𝑐𝑚/𝑑𝛼 =

0 or in other words, the pitching moment is independent of angle of
attack.

𝑑𝑐𝑚𝑎𝑐
𝑑𝛼

=
𝑑𝑐𝑚𝑙𝑒
𝑑𝛼

+ 𝑑𝑐𝑙
𝑑𝛼

𝑥𝑎𝑐

𝑐
= 0 (5.229)

⇒ 𝑥𝑎𝑐

𝑐
=

−𝑑𝑐𝑚𝑙𝑒/𝑑𝛼
𝑑𝑐𝑙/𝑑𝛼

(5.230)

Using the results from the above equations gives:

𝑥𝑎𝑐

𝑐
=

2/𝛽
4/𝛽 =

1
2 (5.231)

Thus, in supersonic thin airfoil theory the aerodynamic center is at the
half chord, not the quarter chord as in subsonic thin airfoil theory.

Example 5.1 Diamond airfoil

As an example consider the diamond airfoil shown in Fig. 5.7. There is no
camber, but the thickness over the first half of the airfoil is given by:

𝑦𝑡 = 2𝑥 tan𝜃 (5.232)

and for the latter half is:
𝑦𝑡 = 2(𝑐 − 𝑥) tan𝜃 (5.233)

If we evaluate the thickness term that appears in the integral:

1
4

(
𝑑𝑦𝑡

𝑑𝑥

)2
=

1
4𝑐

∫ 𝑐

0

(
𝑑𝑦𝑡

𝑑𝑥

)2
𝑑𝑥 (5.234)

=
1
4𝑐

[∫ 𝑐/2

0

(
𝑑𝑦𝑡

𝑑𝑥

)2
𝑑𝑥 +

∫ 𝑐

𝑐/2

(
𝑑𝑦𝑡

𝑑𝑥

)2
𝑑𝑥

]
(5.235)

=
1
4𝑐

[
4 tan2 𝜃

𝑐

2 + 4 tan2 𝜃
𝑐

2

]
= tan2 𝜃 =

(
𝑡

𝑐

)2
(5.236)
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Fig. 5.8 Control volume around a
shock wave.

The resulting drag coefficient estimate for the diamond airfoil is thus:

𝑐𝑑 =
4√

𝑀2
∞ − 1

(
𝛼2 +

(
𝑡

𝑐

)2
)

(5.237)

Shock-expansion theory, discussed in the next section, is more
accurate as it does not rely on the small disturbance assumptions and is
well suited for numerical simulations. Although these simple methods
are less exact, they give rise to analytic expressions that allow for back-
of-the-envelope estimation and provide insight into the main factors
that affect supersonic airfoils.

5.6 Shock Waves

Normal shock waves are perpendicular to the flow direction, whereas
oblique shock waves occur at an angle relative to the flow. It is
convenient to conceptually differentiate between normal shock waves
and oblique shock waves, although theoretically we could treat every
shock wave as a normal shock wave with an appropriate change of
reference. The physics does not change between the two types, it is just
a convenient construct to align with flow directions.

5.6.1 Normal Shock Waves

We determined the speed of sound by placing a control volume around
a sound wave, which is an infinitely weak, isentropic, pressure wave
(Section 5.1.6). To analyze shock waves, we use a similar process.
However, a shock wave is not isentropic, and fluid properties change
by a finite, discontinuous amount. Shock waves are not actually
discontinuities, but are extremely thin regions (typically on the order of
microns) across which fluid properties change rapidly. From the macro
fluid level they appear discontinuous and are generally treated as such.

Consider the shock wave and control volume shown in Fig. 5.8. A
mass, momentum, and energy balance yields:

𝜌1𝑢1 = 𝜌2𝑢2 (5.238)

𝑝1 + 𝜌1𝑢
2
1 = 𝑝2 + 𝜌2𝑢

2
2 (5.239)

ℎ1 +
𝑢2

1
2 = ℎ2 +

𝑢2
2

2 (5.240)

In the latter two equations we have assumed that the flow is inviscid at
the boundaries of the control volume. The shock wave itself is highly
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Fig. 5.9 Shock jump relationships.

Fig. 5.10 Mach number downstream
of a normal shockwave.

viscous, but that viscous behavior is confined to the interior of the
control volume. We make the control volume just large enough so
that the boundaries are outside the large velocity gradients that occur
within the shock wave.

If we assume a calorically perfect gas we can add the ideal gas
equation of state and the simple relationship for specific heats:

𝑝 = 𝜌𝑅𝑇 (5.241)

ℎ = 𝑐𝑝𝑇 (5.242)

We now have five equations and five unknowns that we can solve
algebraically. In the more general case, where specific heats vary with
temperature and potentially pressure, these equations can still be solved
but a numerical solution may be necessary.

Solving for the five unknowns results in the following shock jump
equations:

𝑢2
𝑢1

=
𝜌1

𝜌2
=

2 + (𝛾 − 1)𝑀2
1

(𝛾 + 1)𝑀2
1

𝑝2

𝑝1
= 1 + 2𝛾

𝛾 + 1 (𝑀
2
1 − 1)

𝑇2
𝑇1

=
ℎ2
ℎ1

=
𝑝2

𝑝1

𝜌1

𝜌2

(5.243)

(5.244)

(5.245)

These ratios are plotted as a function of Mach number in Fig. 5.9.
From the derivation we can also show that the upstream Mach

number is always supersonic and the downstream Mach number is
always subsonic (with the speeds measured relative to the shock wave).
The downstream Mach number is as follows:

𝑀2 =

√
2 + (𝛾 − 1)𝑀2

1

2𝛾𝑀2
1 − (𝛾 − 1)

(5.246)

and is plotted in Fig. 5.10: The downstream Mach number asymptotes
to:

lim
𝑀1→∞

𝑀2 =

√
𝛾 − 1
2𝛾 ≈ .378 (5.247)

This is not to say that the downstream speed asymptotes, indeed the
temperature keeps rising with increasing Mach number as shown in
Fig. 5.9, and so the speed of sound and thus the actually speed must
keep rising as well.
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Fig. 5.11 Total pressure drop across a
normal shockwave.

A shock wave, while viscous, is still adiabatic and so the total
temperature is preserved:

𝑇𝑇1 = 𝑇𝑇2 (5.248)

Total pressure will not be constant, however, because of viscosity. We
use the total pressure definition (Eq. 5.96) separately for the upstream
and downstream properties.

𝑝𝑇1
𝑝1

=

(
1 + 𝛾 − 1

2 𝑀2
1

)𝛾/(𝛾−1)
(5.249)

𝑝𝑇2
𝑝2

=

(
1 + 𝛾 − 1

2 𝑀2
2

)𝛾/(𝛾−1)
(5.250)

We now divide the two equations by each other:

𝑝𝑇2
𝑝𝑇1

=
𝑝2

𝑝1

(
1 + 𝛾−1

2 𝑀2
2

)𝛾/(𝛾−1)

(
1 + 𝛾−1

2 𝑀2
1

)𝛾/(𝛾−1) (5.251)

We now substitute in Eq. 5.244 and Eq. 5.246:

𝑝𝑇2
𝑝𝑇1

=

(
1 + 2𝛾

𝛾 + 1 (𝑀
2
1 − 1)

) (
1 + 𝛾−1

2

(
2+(𝛾−1)𝑀2

1
2𝛾𝑀2

1−(𝛾−1)

))𝛾/(𝛾−1)

(
1 + 𝛾−1

2 𝑀2
1

)𝛾/(𝛾−1) (5.252)

After some simplification we arrive at the, still rather lengthy, equation
for the total pressure drop across a normal shock wave:

𝑝𝑇2
𝑝𝑇1

=

(
𝛾 + 1

2𝛾𝑀2
1 − (𝛾 − 1)

) 1
𝛾−1

(
(𝛾 + 1)𝑀2

1

2 + (𝛾 − 1)𝑀2
1

) 𝛾
𝛾−1

(5.253)

This total pressure drop is plotted as a function of upstream Mach
number in Fig. 5.11. Notice that the total pressure drop is relatively
small for Mach numbers not much greater than one, but then starts to
drop precipitously. This is why many proposed supersonic transports
fly at Mach numbers that are only modestly above Mach 1. As the
Mach number increases further the total pressure drop becomes very
significant and thus the amount of energy burned increases rapidly
with higher speeds. The relationship between Mach number and total
pressure loss is not the same for an airplane, as the shock waves along an
aircraft are not all normal shock waves. More general shock waves are
discussed in the following section. However, the qualitative behavior is
still relevant.
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Fig. 5.12 An oblique shock wave angle
(𝛽) compared to a Mach wave angle
(𝜇).

Fig. 5.13 An oblique shock wave.

5.6.2 Oblique Shock Waves

An oblique shock wave forms at an angle between that of a normal
shock wave (perpindicular) and that of a Mach wave (depicted with
the angle 𝜇 in Fig. 5.2 and Eq. 5.2). Oblique waves are weaker than a
normal shock wave, weaker in the sense that they produce less entropy
or less total pressure loss, and thus less drag for a flight vehicle. A
Mach wave is the limit of an infinitely weak oblique shock wave. Like a
normal shock wave, an oblique shock wave is nonisentropic and behind
the wave the pressure, density, and temperature all increase discretely.
Unlike a normal shock wave, the Mach number behind an oblique
shock wave may still be supersonic.

An oblique shock wave formed at an inside corner is depicted in
Fig. 5.13. We call 𝜃 the turning angle, it is the angle change for the fluid
flow. We call 𝛽 the shock angle. It is the angle of the shock wave and
produces the discrete change in direction for the flow, as well as the
accompanying pressure, temperature, density increase.

Oblique shock waves are not really a special case, it is just a normal
shock wave relative to the flow perpendicular to the wave (the tangential
component of the flow is unaffected). However, it is convenient to
rework the equations in a frame of reference relative to the incoming
flow.

Fig. 5.14 Velocity components before
and after an oblique shock wave.

Figure 5.14 depicts the velocity components upstream and down-
stream of an oblique shock. We have broken up the velocity vectors into
components both normal to (subscript 𝑛) and tangential to (subscript
𝑡) the shock wave. The tangential component is unaffected, and the
normal component follows the normal shock jump equations derived
previously. From the previous discussion we now that the downstream
normal component is always subsonic, however the downstream total
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velocity vector may be, and often is, supersonic.
The incoming normal Mach number, as shown in Fig. 5.14, is:

𝑀1𝑛 = 𝑀1 sin 𝛽 (5.254)

and the exit Mach number is:

𝑀2𝑛 = 𝑀2 sin(𝛽 − 𝜃) (5.255)

We can use the incoming normal Mach number in Eqs. 5.243 to 5.245 to
compute the downstream pressure, density, and temperature (using
𝑀1𝑛 in place of 𝑀1 in the previous equations). However, this normal
number depends on the shock angle 𝛽 and that is not known beforehand.
We only know the turning angle 𝜃 based on the problem geometry.

To relate these angles with known properties we refer back to
Fig. 5.14 and note that:

tan 𝛽 =
𝑉1𝑛
𝑉1𝑡

(5.256)

and
tan(𝛽 − 𝜃) = 𝑉2𝑛

𝑉2𝑡
(5.257)

We subtract these two equations, recalling that 𝑉1𝑡 = 𝑉2𝑡 so:

tan 𝛽 − tan(𝛽 − 𝜃) = 𝑉1𝑛 −𝑉2𝑛
𝑉1𝑡

(5.258)

We expand the left hand side with a trig identity, and on the right hand
side we divide top and bottom by 𝑉1𝑛 .

tan 𝛽 − (tan 𝛽 − tan𝜃)
1 + tan 𝛽 tan𝜃

=
1 − 𝑉2𝑛

𝑉1𝑛
𝑉1 𝑡
𝑉1𝑛

(5.259)

On the left hand side we put the two terms on a common denominator,
add, then simplify. On the right we use Eq. 5.243 to express the jump in
velocity across the shock wave (nothing that we need to use the normal
component of the upstream Mach number), and from Fig. 5.14 we see
that the term in the denominator is just 1/tan 𝛽.

tan2 𝛽 tan𝜃 + tan𝜃

1 + tan 𝛽 tan𝜃
= tan 𝛽

(
1 − (2 + (𝛾 − 1)𝑀1

2
𝑛)

(𝛾 + 1)𝑀1
2
𝑛

)
(5.260)

On the left we factor out tan𝜃 from the two terms in the numerator and
use a trig identity on the remaining portion. On the right we expand
with a common denominator and add the two terms.

tan𝜃(sec2 𝛽)
1 + tan 𝛽 tan𝜃

= tan 𝛽

(
2𝑀1

2
𝑛 − 2

(𝛾 + 1)𝑀1
2
𝑛

)
(5.261)
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Using Eq. 5.254 we express 𝑀1𝑛 in terms of the upstream Mach number.
We move the 𝑠𝑒𝑐2 term to the denominator and expand 𝑡𝑎𝑛𝛽 to make
the cancellations more obvious.

tan𝜃)
cos2 𝛽(1 + tan 𝛽 tan𝜃) =

sin 𝛽

cos 𝛽

(
2𝑀1

2 sin2 𝛽 − 2
(𝛾 + 1)𝑀1

2 sin2 𝛽

)
(5.262)

One the right side the sin 𝛽 terms cancel. A cos 𝛽 cancels across both
sides. The remaining cos 𝛽 term is distributed across the parenthetical
term.

tan𝜃

cos 𝛽 + sin 𝛽 tan𝜃) =
(

2𝑀1
2 sin2 𝛽 − 2

(𝛾 + 1)𝑀1
2 sin 𝛽

)
(5.263)

We now try to isolate 𝜃 by dividing both numerator and denominator
of the left side term by tan𝜃.

1(
cos 𝛽
tan𝜃 + sin 𝛽

) =

(
2𝑀1

2 sin2 𝛽 − 2
(𝛾 + 1)𝑀1

2 sin 𝛽

)
(5.264)

To isolate 𝜃 we invert both sides then subtract sin 𝛽 from both sides.

cos 𝛽
tan𝜃

=

( (𝛾 + 1)𝑀1
2 sin 𝛽

2𝑀1
2 sin2 𝛽 − 2

)
− sin 𝛽 (5.265)

We now put the right hand side on a common denominator and add:

cos 𝛽
tan𝜃

=

( (𝛾 + 1)𝑀1
2 sin 𝛽 − 2𝑀1

2 sin3 𝛽 + 2 sin 𝛽

2𝑀1
2 sin2 𝛽 − 2

)
(5.266)

On the right side we can factor a sin 𝛽 term out of the numerator. Then
we invert both sides and multiply by cos 𝛽.

tan𝜃 =
cos 𝛽
sin 𝛽

(
2𝑀1

2 sin2 𝛽 − 2
(𝛾 + 1)𝑀1

2 − 2𝑀1
2 sin2 𝛽 + 2

)
(5.267)

We can simplify a bit more.

tan𝜃 =
1

tan 𝛽

(
2(𝑀1

2 sin2 𝛽 − 1)
(𝛾𝑀1

2 +𝑀1
2(1 − 2 sin2 𝛽) + 2

)
(5.268)

Then using a trig identity on the denominator, leading to our final
expression.

tan𝜃 =
2

tan 𝛽

(
𝑀1

2 sin2 𝛽 − 1
𝑀1

2[𝛾 + cos(2𝛽)] + 2

)
(5.269)
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We now have an explicit expression for 𝜃 in terms of 𝛽 and𝑀1, although
more typically what we want is 𝛽 given 𝑀1 and 𝜃 as inputs. In the
latter case, this is still an implicit equation. Still the explicit form is
convenient for creating graphs.

This oblique shock relationship is plotted in Fig. 5.15 for a few
different incoming Mach numbers. Notice that for a given turning

Fig. 5.15 Oblique shock relationship
for different turning angles.

angle (𝜃) there are two solutions. These are called the weak solution and
the strong solution. The weak solution typically occurs naturally. The
strong solution may occur if downstream conditions require it—for
example if we change the back pressure in an engine or wind tunnel.
The limits of the weak and strong solution are Mach waves and normal
shocks respectively, and occur at deflection angles of zero.

We also see that there is a maximum deflection angle, 𝜃𝑚𝑎𝑥 for a
given Mach number. For the weak solution the downstream Mach
number is supersonic, except for a small region of solutions near 𝜃𝑚𝑎𝑥 .
For geometries that require a turning angle larger than this, an oblique
shock will not occur, and instead a detached bow shock will form.

A bow shock is depicted in Fig. 5.16. As suggested by the numbered
points, a bow shock passes through all points in the oblique shock
relationships shown in Fig. 5.15. Point 1 corresponds to a normal shock.
Point 2 is a strong oblique shock (with subsonic flow behind it). Point 3
is the dividing line between subsonic and supersonic downstream flow.
Notice that this point occurs near to, but not at, 𝜃𝑚𝑎𝑥 Point 4 is a weak
oblique shock. The shock angle is changing continuously through the
bow shock, but asymptotes to that of a Mach wave (point 5). A blunt
body will necessarily create a detached bow shock since a large turning
angle is required.



5 Compressible Flow 184

1

2

3

4

5
1 2

3

4
5

✓

�

subsonic

supersonic

Fig. 5.16 A detatced bow shock wave.

Fig. 5.17 An expansion fan.

7. Anderson, Modern Compressible Flow:
With Historical Perspective, 2003.

Fig. 5.18 Infinitesimal turning
through a Mach wave.

Fig. 5.19 The change in velocity oc-
curs at a right angle to the Mach wave.

5.7 Expansion Fans

An expansion fan also known as an expansion wave, or a Prandtl-Meyer
expansion wave is essentially the opposite of an oblique shock. Through
an expansion fan the Mach number increases, and pressure, density,
and temperature all decrease. Whereas oblique shock waves occur on
an inside corner, or more generally where the fluid turns in on itself,
expansion fans occur on outside corners or where the fluid turns away
from itself. Unlikely, a shock wave, an expansion fan occurs across a
continuous region (the streamlines curve smoothly), and is isentropic.
It is a continuous region consisting of an infinite number of Mach
waves, each creating an infinitesimal isentropic change. The Mach
waves starting at the incoming mach number:

sin𝜇1 =
1
𝑀1

(5.270)

and end at the exit Mach number:

sin𝜇2 =
1
𝑀2

(5.271)

This is depicted in Fig. 5.17.
The following derivation for analyzing an expansion fan is similar

to that of Anderson.7 Consider the flow through a Mach wave as
exaggerated in Fig. 5.18. The turning angle is some infinitesimal
amount 𝑑𝜃 through which the velocity increases by some infinitesimal
amount 𝑑𝑉 . We know that the change in velocity can only occur in a
direction normal to the Mach wave (as it is the limit of an infinitely weak
oblique shock wave). Thus, we can draw the velocity relationships as
shown in Fig. 5.19. We can now relate the velocity vectors to the angles
using the law of sines. The angles we can work out from the known
information as shown in Fig. 5.20.

sin
(𝜋

2 + 𝜇
)

𝑉 + 𝑑𝑉 =
sin

(𝜋
2 − 𝜇 − 𝑑𝜃

)
𝑉

(5.272)

https://books.google.com/books?vid=ISBN1259027422
https://books.google.com/books?vid=ISBN1259027422
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Fig. 5.20 Relevant angles to relate the
velocity change and angle change.

The trig expressions can be simplified as:

cos𝜇
𝑉 + 𝑑𝑉 =

cos(𝜇 + 𝑑𝜃)
𝑉

(5.273)

The right hand trig function we expand using the sum formula:

cos𝜇
𝑉 + 𝑑𝑉 =

cos𝜇 cos 𝑑𝜃 − sin𝜇 sin 𝑑𝜃
𝑉

(5.274)

Since 𝑑𝜃 is an infinitesimal amount, in the limit cos 𝑑𝜃 → 1 and
sin 𝑑𝜃 → 𝑑𝜃. The resulting equation is then:

cos𝜇
𝑉 + 𝑑𝑉 =

cos𝜇 − sin𝜇𝑑𝜃

𝑉
(5.275)

We cross multiply:

cos𝜇
cos𝜇 − sin(𝜇)𝑑𝜃 =

𝑉 + 𝑑𝑉
𝑉

(5.276)

Simplifying:
1

1 − tan(𝜇)𝑑𝜃 = 1 + 𝑑𝑉

𝑉
(5.277)

The left hand side we can expand using the series expansion:

1
1 − 𝑥 = 1 + 𝑥 + 𝑥2 + . . . for |x| < 1 (5.278)

In our case, the 𝑥 term is infinitesimally small so we can drop all higher
order terms, which will be exact in the limit.

1 + tan(𝜇)𝑑𝜃 = 1 + 𝑑𝑉

𝑉
(5.279)

We can cancel the ones, and since we know that sin𝜇 = 1/𝑀 (Eq. 5.2),
we know that tan𝜇 = 1/

√
𝑀2 − 1

1√
𝑀2 − 1

𝑑𝜃 =
𝑑𝑉

𝑉
(5.280)

Thus, we can relate the angle change to the velocity change as:

𝑑𝜃 =
√
𝑀2 − 1 𝑑𝑉

𝑉
(5.281)

Now we wish to find the total angle change across a series of
continuous Mach waves. In other words, we need to integrate both
sides. ∫ 𝜃2

𝜃1

𝑑𝜃 =

∫ 𝑀2

𝑀1

√
𝑀2 − 1 𝑑𝑉

𝑉
(5.282)
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The right integrand is in terms of 𝑉 but we would like it to be in terms
of the Mach number. We can expand derivatives of velocity in terms of
Mach number (𝑉 = 𝑀𝑎):

𝑑𝑉 = 𝑀𝑑𝑎 + 𝑎𝑑𝑀 (5.283)

Thus:
𝑑𝑉

𝑉
= 𝑀

𝑑𝑎

𝑉
+ 1
𝑀
𝑑𝑀 (5.284)

The speed of sound is given by (Eq. 5.89):

𝑎 =
√
𝛾𝑅𝑇 (5.285)

Rather than using the static fluid properties we could also express in
terms of total conditions:

𝑎𝑇 =
√
𝛾𝑅𝑇𝑇 (5.286)

Dividing these two equations gives:

𝑎𝑇

𝑎
=

√
𝑇𝑇

𝑇
=

√
1 + (𝛾 − 1)

2 𝑀2 (5.287)

where the latter expression comes from the definition of total tempera-
ture (Eq. 5.95). We write this expression in terms of 𝑎:

𝑎 = 𝑎𝑇

(
1 + (𝛾 − 1)

2 𝑀2
)−1/2

(5.288)

Taking derivatives gives:

𝑑𝑎 = −𝑎𝑇
1
2

(
1 + (𝛾 − 1)

2 𝑀2
)−3/2 (𝛾 − 1)

2 2𝑀𝑑𝑀 (5.289)

= −𝑎 1
2

(
1 + (𝛾 − 1)

2 𝑀2
)−1

(𝛾 − 1)𝑀𝑑𝑀 (5.290)

= −𝑉
(𝛾−1)

2

1 + (𝛾−1)
2 𝑀2

𝑑𝑀 (5.291)

Substituting this expression back into Eq. 5.284:

𝑑𝑉

𝑉
=

−(𝛾−1)
2 𝑀

1 + (𝛾−1)
2 𝑀2

𝑑𝑀 + 1
𝑀
𝑑𝑀 (5.292)

=

−(𝛾−1)
2 𝑀2 + 1 + (𝛾−1)

2 𝑀2

𝑀
(
1 + (𝛾−1)

2 𝑀2
) 𝑑𝑀 (5.293)

=
1

𝑀
(
1 + (𝛾−1)

2 𝑀2
) 𝑑𝑀 (5.294)
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We now have an expression in terms of Mach number that we can
substitute into Eq. 5.282:

Δ𝜃 =

∫ 𝑀2

𝑀1

√
𝑀2 − 1

𝑀
(
1 + (𝛾−1)

2 𝑀2
) 𝑑𝑀 (5.295)

This expression can be analytically integrated, and as the result is
somewhat long, we use the shorthand 𝜈 to represent the function.

𝜈(𝑀) =

√
𝛾 + 1
𝛾 − 1 tan−1

√
𝛾 − 1
𝛾 + 1 (𝑀

2 − 1) − tan−1
√
𝑀2 − 1 (5.296)

Thus, the change in angle across the expansion fan is then computed
as:

Δ𝜃 = 𝜈(𝑀2) − 𝜈(𝑀1) (5.297)



Fig. 6.1 Propeller (top) produces
thrust and requires power (to over-
come the resistive torque) to operate,
whereas a turbine (bottom) produces
torque and is accompanied by a re-
sulting drag.

8. Ning, Using Blade Element Momentum
Methods with Gradient-Based Design
Optimization, 2021.

6Propellers and Turbines

Both propellers and turbines use rotating blades but for different
purposes. A propeller is designed to produce thrust and thus propel a
vehicle, and in the process a torque is produced that opposes the blade
motion and thus requires input power to maintain the rotation (top half
of Fig. 6.1). A turbine is designed to produce a torque in the direction
of blade motion and thus extract power from the moving fluid, and in
the process a drag force is produced (bottom half of Fig. 6.1).

In Fig. 6.1 a streamtube passing through the rotor disk is also shown.
A streamtube is a collection of streamlines. The propeller imparts
momentum in the direction of the freestream and thus the streamtube
area decreases (continuity equation). Conversely, the turbine extracts
momentum leaving behind a wake of slower speeds and thus the
streamtube area expands.

For conceptual design an effective method to analyze turbines and
propellers is blade element momentum (BEM) theory. BEM theory
is a combination of momentum balances and blade element (airfoil)
analyses. The next two sections derive the theory from the perspective
of a propeller and then from a perspective of a turbine. Both can
be easily unified in a single derivation,8 but when first learning the
methods it is easier to comprehend when using the conventions of the
application of interest. Reading only one of these sections is necessary.
The two sections are written to stand alone, and because there is a lot
of commonality between the two applications there is a lot of repeat
material.

6.1 Blade Element Momentum Theory: Propellers

We will perform the derivation first from the perspective of a propeller
and then from the perspective of a wind turbine. Note that we use
the term propellers to generically refer to any turbomachine that adds
momentum to the fluid.
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Fig. 6.2 The blue annulus streamtube
is used as our control volume in the
derivation of this section. The sta-
tions are denoted by ∞: far upstream,
𝑑: the rotor disk, and 𝑤 in the far
wake.

Fig. 6.3 Side view of control volume
with resultant force 𝑇 shown in typi-
cal thrust direction (−𝑥 direction for
our coordinate system).

6.1.1 Linear Momentum Balance

We will use a streamtube as our control volume, but rather than use one
large streamtube across the entire rotor, we use an infinitesimally thin
annulus streamtube at a given radial location of the rotor (Fig. 6.2). For
convenience we define three stations as shown in the figure: upstream,
at the rotor disk, and in the wake.

Figure 6.3 shows the control volume from a side view. First, we
perform a mass balance. In the following derivation we neglect any
variations in density. Compressibility, if necessary, is included in the
blade element formulation.

𝜌𝑉∞𝐴∞ = 𝜌𝑉𝑑𝐴𝑑 = 𝜌𝑉𝑤𝐴𝑤 (6.1)

Notice that as the velocity increases, the cross sectional area decreases.
Next, we apply an x-momentum balance across the entire control

volume, where we take the positive direction for x as downwind:

𝜌𝑉∞(−𝑉∞𝐴∞) + 𝜌𝑉𝑤(𝑉𝑤𝐴𝑤) = 𝑇 (6.2)

We make no assumption about the direction of the thrust, but rather let
the equations determine the direction of thrust. The standard definition
for thrust is the force opposite to 𝑉∞. However, in the momentum
balance we need to use the force the propeller exerts on the fluid, which
is in the opposite direction, and is thus positive above. Combining
these two expressions yields:

𝑇 = 𝜌𝐴𝑑𝑉𝑑(𝑉𝑤 −𝑉∞) (6.3)

It is not obvious that the pressure terms from the sides of the control
volume cancel, but they do. We can come up with the same result more
rigorously, with a cylindrical control volume that does not follow the
streamlines, but the details are omitted here.

Let us now use a second control volume just across the disk. We
will call the 𝑥 location just upstream of the disk station 2, and just
downstream will be called station 3. Performing a momentum balance
yields (again neglecting any density changes across the disk):

𝜌𝑉2(−𝑉2𝐴2) + 𝜌𝑉3(𝑉3𝐴3) = 𝑇 + 𝑝2𝐴2 − 𝑝3𝐴3 (6.4)

Because𝐴2 = 𝐴3 = 𝐴𝑑 and the velocity must vary continuously through
the disk (𝑉2 = 𝑉3) the above expression simplifies to:

𝑇 = 𝐴𝑑(𝑝3 − 𝑝2) (6.5)

Combining the two expressions for thrust (Eqs. 6.3 and 6.5) yields:

𝜌𝑉𝑑(𝑉𝑤 −𝑉∞) = (𝑝3 − 𝑝2) (6.6)
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To relate the pressure change from station 2 to 3, we use Bernoulli’s
equation (Eq. 5.77). We cannot apply Bernoulli’s equation from station
2 to station 3 directly because work is done on the fluid between those
stations. However, we can apply the equation upstream of the turbine
and downstream of the turbine separately.

First, from station ∞ to station 2:

𝑝∞ + 1
2𝜌𝑉

2
∞ = 𝑝2 +

1
2𝜌𝑉

2
2 (6.7)

then from station 3 to station 𝑤:

𝑝3 +
1
2𝜌𝑉

2
3 = 𝑝𝑤 + 1

2𝜌𝑉
2
𝑤 (6.8)

If we subtract the two equations and simplify using 𝑉2 = 𝑉3, and
assume our control volume is large enough so that 𝑝∞ = 𝑝𝑤 we have

𝑝3 − 𝑝2 =
1
2𝜌(𝑉

2
𝑤 −𝑉2

∞) (6.9)

This expression for the pressure drop is inserted into Eq. 6.6

𝜌𝑉𝑑(𝑉𝑤 −𝑉∞) = (𝑝3 − 𝑝2)

𝜌𝑉𝑑(𝑉𝑤 −𝑉∞) =
1
2𝜌(𝑉

2
𝑤 −𝑉2

∞)

𝑉𝑑(𝑉𝑤 −𝑉∞) =
1
2 (𝑉𝑤 −𝑉∞)(𝑉𝑤 +𝑉∞)

𝑉𝑑 =
1
2 (𝑉𝑤 +𝑉∞)

(6.10)

This yields the result that the velocity at the disk is half way between
the upstream and downstream velocity. A similar relationship was
derived for a lifting wing when we showed that the downwash at the
wing is half of the downwash in the farfield.

With this relationship, we can generically relate the velocities at the
3 stations using the unknown induced velocity 𝑢 (Fig. 6.4).

Fig. 6.4 Depiction of the induced ve-
locity in at the rotor disk and in the
farfield.

By convention one typically nondimensionalizes 𝑢 as follows:

𝑉𝑑 = 𝑉∞ + 𝑢

= 𝑉∞

(
1 + 𝑢

𝑉∞

)
= 𝑉∞ (1 + 𝑎)

(6.11)
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9. Glauert, Airplane Propellers, 1935.

Fig. 6.5 Tip loss function, which goes
to zero at the tip, to simulate a finite
rotor.

The quantity 𝑎 is called the axial induction factor. Similarly, we can
express the far-field velocity as:

𝑉𝑤 = 𝑉∞(1 + 2𝑎) (6.12)

With these definitions, we can express thrust in terms of the axial
induction factor (using Eqs. 6.5, 6.6, 6.11, and 6.12):

𝑇 = 𝜌𝐴𝑑𝑉𝑑(𝑉𝑤 −𝑉∞)
= 𝜌𝐴𝑑𝑉∞(1 + 𝑎)(𝑉∞(1 + 2𝑎) −𝑉∞)
= 𝜌𝐴𝑑𝑉

2
∞(1 + 𝑎)(2𝑎)

(6.13)

6.1.2 Extensions and Modifications to the Basic Methodology

The basic momentum theory ignores the hub and tip vortices that affect
the induced velocity. Various correct methods exist; we use the simple
analytical expression developed by Prandtl.9

𝑓𝑡𝑖𝑝 =
𝐵

2

(
𝑅 − 𝑟
𝑟 | sin 𝜙 |

)
𝐹𝑡𝑖𝑝 =

2
𝜋

arccos(exp(− 𝑓𝑡𝑖𝑝))

𝑓ℎ𝑢𝑏 =
𝐵

2

(
𝑟 − 𝑅ℎ𝑢𝑏

𝑅ℎ𝑢𝑏 | sin 𝜙 |

)
𝐹ℎ𝑢𝑏 =

2
𝜋

arccos(exp(− 𝑓ℎ𝑢𝑏))

𝐹 = 𝐹𝑡𝑖𝑝𝐹ℎ𝑢𝑏

(6.14)

The absolute value is necessary because our definition permits both
positive and negative inflow angles. This hub/tip-loss factor (which is
always between 0 and 1) is applied directly to the thrust.

𝑇 = 2𝑎(1 + 𝑎)𝜌𝐴𝑑𝑉2
∞𝐹 (6.15)

The tip loss function is visualized in Fig. 6.16
Another common modification is adjusting for high induction

factors, but this is only applicable to turbines and is not discussed here.
We will use a disk area that is infinitesimally thin 𝐴𝑑 = 2𝜋𝑟 so that

we get a thrust per unit length. The final form for the thrust per unit
length at a given radial section is then:

𝑇′ = 4𝑎(1 + 𝑎)𝜌𝑉2
∞𝜋𝑟𝐹 (6.16)

If 𝑎 is positive then the rotor is acting as a propeller, if negative it is
acting as a turbine (and thus produces drag instead of thrust).
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6.1.3 Efficiency

For propellers, a quantity we often care about is the efficiency. So far
we have been discussing the flow field from a frame fixed with the
propeller (i.e., the left side of Fig. 6.6). In other words, in our frame of
reference the propeller is not moving, freestream air is coming in at
speed 𝑉∞ and a wake is left behind at speed 𝑉𝑤 . An understanding of
efficiency is perhaps easier to see from a ground-fixed frame. To achieve
that we simply vectorially subtract 𝑉∞ from all the velocities (right side
of Fig. 6.6). Now the propeller (i.e., with the aircraft) is moving with
speed 𝑉∞ into still air and leaving behind a wake with speed 𝑉𝑤 −𝑉∞.

Fig. 6.6 Propeller shown in the frame
of the propeller and in a ground-fixed
frame.

The propulsive efficiency is given by the useful power out (𝑇𝑉∞)
divided by all the power put into the system (power out plus power
left behind in the wake):

𝜂 =
𝑇𝑉∞

𝑇𝑉∞ + 1
2 ¤𝑚(𝑉𝑤 −𝑉∞)2

(6.17)

If we plug in our expression for thrust (Eq. 6.16) and note that the
mass flow rate is: ¤𝑚 = 𝜌𝐴𝑑𝑉𝑑 then this efficiency calculation can be
simplified to:

𝜂 =
2

1 + 𝑉𝑤
𝑉∞

(6.18)

and our thrust in Eq. 6.13 can be written as:

𝑇 = ¤𝑚(𝑉𝑤 −𝑉∞) (6.19)

What these equations tell us is that for maximum efficiency we
would like 𝑉𝑤 = 𝑉∞. In other words, we would like to leave no energy
behind in the wake. However, that also means that the propeller
produces zero thrust. Conversely, if we make 𝑉𝑤 larger than we can
increase our thrust, but at the expense of decreased efficiency. Another
parameter we can change to increase thrust is to increase the mass flow
rate ¤𝑚, which generally means increasing the size of the propeller (𝐴𝑑).
Increasing propeller diameter allows us to increase propulsive thrust
without sacrificing efficiency. Of course, increasing propeller diameter
comes with its own tradeoffs specific to the application, but in general
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Fig. 6.7 The induced swirl velocity is
in the direction opposite to that of the
torque on the rotor.

leads to increased weight and noise. Additionally, increasing diameter
may increase the tip Mach number, leading to shock waves, completely
eliminating any efficiency gains.

6.1.4 Angular Momentum

Similar to the linear momentum case, where an induced velocity is
produced in opposition to the force on the rotor, the rotation of the
blades is accompanied by an induced swirl velocity in the opposite
direction to that of the torque on the rotor. Unlike, the linear momentum
case where the induced velocity change occurs across a large control
volume, the rotational velocity change occurs only across the rotor disk.
Conservation of momentum yields the same result as the linear case,
where the induced velocity at the disk is halfway between its upstream
and downstream values. In this case, upstream and downstream is just
upstream and downstream of the rotor disk, instead of in the farfield.
The induced rotational velocity is 0 upwind of the rotor, 𝑣 in the plane
of the rotor, and 2𝑣 downstream of the rotor (opposing the direction
of the torque on the rotor). Just like before, we define a normalized
version of this induced velocity, which we call the tangential induction
factor: 𝑎′ = 𝑣/𝑉𝑦 , where 𝑉𝑦 is the tangential inflow velocity and in the
absence of wind or other motion is just Ω𝑟.

The angular momentum balance can be obtained by taking the
position vector ⇀

𝑟 crossed into the momentum equation. In this case we
take 𝑟 as the radial distance from the center of the turbine. We repeat
the linear momentum equation from Eq. 1.75, except that we represent
the pressure and shear terms generically as a sum of forces.

𝜕

𝜕𝑡

∫
–𝑉
𝜌

⇀

𝑉𝑑–𝑉 +
∫
𝐴

𝜌
⇀

𝑉
(
⇀

𝑉 · 𝑑
⇀

𝐴
)
=

∑ ⇀

𝐹 (6.20)

Perform the cross product yields:

𝜕

𝜕𝑡

∫
–𝑉
𝜌(⇀𝑟 ×

⇀

𝑉)𝑑–𝑉 +
∫
𝐴

(⇀𝑟 ×
⇀

𝑉)𝜌
(
⇀

𝑉 · 𝑑
⇀

𝐴
)
=

∑
⇀
𝑟 ×

⇀

𝐹 (6.21)

Although a rotating turbine is fundamentally unsteady, we are typically
interested in time-averaged quantities (e.g., torque, thrust). Once time
averaged, the time-dependent term goes to zero. Then, to express this
equation more concisely we use the mass flow rate ¤𝑚 = 𝜌

⇀

𝑉 · 𝑑
⇀

𝐴, and
recognize the right hand side as torque (𝑄):∫

𝐴

(
®𝑟 × ®𝑉

)
¤𝑚 =

∑
®𝑄 (6.22)
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Fig. 6.8 Velocity vectors for angular
momentum balance.

We use a disk-shaped control volume that surrounds the rotor disk, and
assume no axial component of velocity exists on the sides of the control
volume. We are then interested in only the inflow and outflow velocity
vectors into the control volume. Figure 6.8 uses an ground-centered
inertial control volume, rather than a blade-centric control volume to
show the velocity triangles. This is a somewhat unconventional frame
of reference and orientation for a turbine/propeller, but is commonly
used in turbomachinery analysis, and is convenient for this particular
analysis. The figure illustrates the inflow and outflow on either side
of the control volume, and notes the direction of blade rotation For a
propeller the direction of torque opposes the rotation direction and
so the induced velocity is in the direction of rotation as shown in the
figure (opposite of the torque).

We define a positive torque as is conventional for propellers, which
is that a positive torque opposes the direction of motion (i.e., torque
is about our −𝑥 axis and is thus negative in our chosen axes.) This
means that the propeller must input power to overcome this resistive
torque. Although that is a negative torque for our coordinate system,
the momentum equations need the torque the rotor exerts on the fluid
(not the torque the fluid exerts on rotor), and so we flip the sign again:

𝑟Ω𝑟2𝑎′ ¤𝑚 = 𝑄

Ω𝑟22𝑎′ ¤𝑚 = 𝑄
(6.23)

Using the results from the previous section:

¤𝑚 = 𝜌𝑉𝑑𝐴𝑑 = 𝜌𝑉∞(1 + 𝑎)𝐴𝑑 (6.24)

adding the hub/tip loss factor, and using our infinitesimal annual ring
area results in:

𝑄′ = 4𝑎′(1 + 𝑎)𝜌𝑉∞Ω𝑟
2𝜋𝑟𝐹 (6.25)

For a turbine the sign of 𝑎′ would reverse and consequently the sign for
the torque and power would automatically switch as well.

6.1.5 Blade Element Theory

We have considered the momentum part of the theory, and now consider
the blade element portion. Blade element is just another name for 2D
airfoil theory. Consider the airfoil from a section of the blade shown in
Fig. 6.9. The inflow plus induced velocities from the previous sections
are shown resulting in the total inflow velocity vector𝑊 . The angle 𝜃,
from the plane of rotation to the airfoil chord line, is called the twist
angle. The angle 𝜙, from the plane of rotation to the inflow velocity



6 Propellers and Turbines 195

vector, is called in the inflow angle. The angle between the velocity
vector and the chord line is the angle of attack:

𝛼 = 𝜃 − 𝜙 (6.26)

Fig. 6.9 Definition for positive twist
and coordinate system for the blade
element theory.

With a known angle of attack we can compute the sectional lift and
drag coefficient from 2D airfoil data. The lift and drag coefficients may
in general also be functions of the Reynolds number and Mach number.

𝑐𝑙 = 𝑓𝐿(𝛼, 𝑅𝑒, 𝑀)
𝑐𝑑 = 𝑓𝐷(𝛼, 𝑅𝑒, 𝑀)

(6.27)

These lift and drag coefficients are generally computed from a spline so
that the results vary smoothly. Because we do not know the induction
factors yet we usually approximate the Reynolds number (and Mach
number) using:

𝑊0 =

√
𝑉2
∞ + (Ω𝑟)2

𝑅𝑒 =
𝜌𝑊0𝑐

𝜇

(6.28)

The impact of this approximation is usually negligible as Reynolds
number changes occur across orders of magnitude. Instead of using
Mach number as one of the inputs in the spline, we could just correct
the lift coefficient with a Prandtl-Glauert rule:

𝑐𝑙 =
𝑐𝑙0√

1 −𝑀2
(6.29)

Using the Kutta-Joukowski theorem, the directions for the lift and
drag coefficients, 𝑐𝑙 and 𝑐𝑑 are as shown in Fig. 6.10.

We need to resolve these forces into the normal and tangential
directions as shown in the figure. These directions are consistent with
the way we have defined thrust and torque in the momentum equations.

𝑐𝑛 = 𝑐𝑙 cos 𝜙 − 𝑐𝑑 sin 𝜙

𝑐𝑡 = 𝑐𝑙 sin 𝜙 + 𝑐𝑑 cos 𝜙
(6.30)
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Fig. 6.10 Directions for the lift and
drag forces from the Kutta Joukowski
theorem.

To compute the total thrust and torque for this blade section we
then multiply by the local dynamic pressure (not freestream, including
induction) and the chord. This gives us the forces/moments per unit
length for one blade, and so to get the forces for the entire rotor we
need to multiply by the number of blades 𝐵:

𝑇′ = 𝐵𝑁′

𝑇′ = 𝐵𝑐𝑛
1
2𝜌𝑊

2𝑐
(6.31)

𝑄′ = 𝐵𝑟𝑇′

𝑄′ = 𝐵𝑟𝑐𝑡
1
2𝜌𝑊

2𝑐
(6.32)

where
𝑊 =

√
[𝑉∞(1 + 𝑎)]2 + [Ω𝑟(1 − 𝑎′)]2 (6.33)

The above formulation is equally applicable to turbines, except that
the positive direction of camber is usually flipped for turbine operation
(imagine flipping the airfoil upside down). Regardless of the camber
direction, any blade can operate as both a turbine or propeller with
appropriate twist, but if we want an efficient turbine we would flip the
camber. This is equivalent to modifying the airfoil functions as:

𝑓𝐿 = −𝑐𝑙(−𝛼, 𝑅𝑒, 𝑀)
𝑓𝐷 = 𝑐𝑑(−𝛼, 𝑅𝑒, 𝑀)

(6.34)

6.1.6 Blade Element Momentum

We can now combine the results from momentum theory and blade
element theory. We first equate the linear momentum equations
(thrust), and next the angular momentum equations (torque). Finally,
we discuss the residual equation which determines whether or not we
have consistency between the momentum and blade element theories.

We equate the thrust from momentum theory and blade element
theory. Before doing so we define the nondimensional parameter:

𝜎′ =
𝐵𝑐

2𝜋𝑟 (6.35)
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which is called the local solidity. It is a measure of how much area the
blades occupy relative to the disk area for a given radial station (hence
local solidity and not total solidity). We now equate the two thrust
equations:

4𝑎(1 + 𝑎)𝜌𝑉2
∞𝜋𝑟𝐹 = 𝐵𝑐𝑛

1
2𝜌𝑊

2𝑐

4𝑎(1 + 𝑎)𝐹 = 𝜎′𝑐𝑛

(
𝑊

𝑉∞

)2 (6.36)

To simplify further we need to relate the inflow velocity to the
induction factors. By referring to Fig. 6.11 we can come up with the
following expressions:

Fig. 6.11 Inflow angle and inflow ve-
locities.

sin 𝜙 =
𝑉∞(1 + 𝑎)

𝑊
(6.37)

or
cos 𝜙 =

Ω𝑟(1 − 𝑎′)
𝑊

(6.38)

These can be rearranged as:
𝑊

𝑉∞
=

1 + 𝑎
sin 𝜙

(6.39)

or
𝑊

Ω𝑟
=

1 − 𝑎′
cos 𝜙 (6.40)

We will use the first substitution for this thrust equation:

4𝑎(1 + 𝑎)𝐹 = 𝜎′𝑐𝑛

(
𝑊

𝑉∞

)2

4𝑎(1 + 𝑎)𝐹 = 𝜎′𝑐𝑛
(1 + 𝑎)2

sin2 𝜙

4𝑎𝐹 = 𝜎′𝑐𝑛
(1 + 𝑎)
sin2 𝜙

(6.41)

This equation can now be solved for 𝑎. After some algebraic manipula-
tion the result is:

𝑎 =
1

4𝐹 sin2 𝜙
𝜎′𝑐𝑛

− 1
(6.42)
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8. Ning, Using Blade Element Momentum
Methods with Gradient-Based Design
Optimization, 2021.

10. Ning, A Simple Solution Method for the
Blade Element Momentum Equations with
Guaranteed Convergence, 2014.

We repeat a similar process for the torques. Equating the torques
from momentum and blade element theories results in:

4𝑎′(1 + 𝑎)𝜌𝑉∞Ω𝑟
2𝜋𝑟𝐹 = 𝐵𝑟𝑐𝑡

1
2𝜌𝑊

2𝑐

4𝑎′(1 + 𝑎)𝐹 = 𝜎′𝑐𝑡
𝑊

𝑉∞

𝑊

Ω𝑟

(6.43)

We now substitute the relationships for 𝑊 . This time we use one of
each of the two equations:

4𝑎′(1 + 𝑎)𝐹 = 𝜎′𝑐𝑡
(1 + 𝑎)
sin 𝜙

(1 − 𝑎′)
cos 𝜙

4𝑎′𝐹 = 𝜎′𝑐𝑡
1

sin 𝜙
(1 − 𝑎′)
cos 𝜙

(6.44)

We can now solve this for 𝑎′:

𝑎′ =
1

4𝐹 sin 𝜙 cos 𝜙
𝜎′𝑐𝑡

+ 1
(6.45)

The above equations allow us to compute the induction factors.
However, we have to be careful as these calculations depend on 𝜙 and
the angle of attack, which in turn depend on the induction factors
(Fig. 6.9). Thus, we have a circular dependency and need to use
an iterative method, or a root solver. Traditionally, this is done by
considering 𝑎 and 𝑎′ as the unknowns and using the two equations
above to form two residuals. However, we can greatly simplify the
solution of these equations by considering 𝜙 and𝑊 as the unknowns
8,10. The inflow velocity has no direct dependence in the BEM equations
(other than in Reynolds number, which operates on a log scale and so the
impact is negligible). This means that we can reduce the residuals to one
equation, which is advantageous because one dimensional root finding
problems can be solved with guaranteed convergence. The solution
of the residual ensures compatibility between the blade element and
momentum theories. From Fig. 6.11 we can write:

tan 𝜙 =
𝑉∞(1 + 𝑎)
Ω𝑟(1 − 𝑎′) (6.46)

This equation could be rearranged in many ways to form a residual
equation, but as demonstrated in the above cited papers a numerically
advantageous form is:

ℛ(𝜙) =
sin 𝜙

1 + 𝑎 − 𝑉∞
Ω𝑟

cos 𝜙
(1 − 𝑎′) = 0 (6.47)

https://dx.doi.org/10.1007/s00158-021-02883-6
https://dx.doi.org/10.1007/s00158-021-02883-6
https://dx.doi.org/10.1007/s00158-021-02883-6
https://dx.doi.org/10.1002/we.1636
https://dx.doi.org/10.1002/we.1636
https://dx.doi.org/10.1002/we.1636
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Fig. 6.12 The rotational velocity at a
given radial station on the blade.

In summary we define a residual function as follows:

function ℛ(𝜙) (6.48)
𝛼 = 𝜃 − 𝜙 (6.49)
𝑐𝑙 = 𝑓 (𝛼, 𝑅𝑒, 𝑀) (6.50)
𝑐𝑑 = 𝑓 (𝛼, 𝑅𝑒, 𝑀) (6.51)
𝑐𝑛 = 𝑐𝑙 cos 𝜙 − 𝑐𝑑 sin 𝜙 (6.52)
𝑐𝑡 = 𝑐𝑙 sin 𝜙 + 𝑐𝑑 cos 𝜙 (6.53)

𝑎 =
𝜎′𝑐𝑛

4𝐹 sin2 𝜙 − 𝜎′𝑐𝑛
(6.54)

𝑎′ =
𝜎′𝑐𝑡

4𝐹 sin 𝜙 cos 𝜙 + 𝜎′𝑐𝑡
(6.55)

return
sin 𝜙

1 + 𝑎 − 𝑉∞
Ω𝑟

cos 𝜙
(1 − 𝑎′) (6.56)

Generally, the solution will be in the bracket: 𝜙 = (0,𝜋/2] (note the
open bracket at zero). Thus, a method like Brent’s method can be
used to yield fast and robust convergence. If airfoil data has not been
extended to such high angles, a smaller range may suffice.

This procedure yields a solution at one radial station of the blade
(Fig. 6.22). Once we solve a section on the blade for the correct inflow
angle 𝜙∗ we can recalculate the resulting loads and induction factors
for that section:

𝑐𝑛 , 𝑐𝑡 , 𝑎, 𝑎
′ = 𝑓 (𝜙∗) (6.57)

We then compute the inflow velocity:

𝑊2 = (𝑉∞(1 + 𝑎))2 + (Ω𝑟(1 − 𝑎′))2 (6.58)

and the thrust and torque per unit length:

𝑇′ = 𝐵𝑐𝑛
1
2𝜌𝑊

2𝑐 (6.59)

𝑄′ = 𝐵𝑟𝑐𝑡
1
2𝜌𝑊

2𝑐 (6.60)

We then need to repeat these procedure at multiple radial stations
given by our chosen blade discretization. We then integrate across the
blade to get total thrust and torque:

𝑇 =

∫ 𝑟𝑡

𝑟ℎ

𝑇′𝑑𝑟 (6.61)

𝑄 =

∫ 𝑟𝑡

𝑟ℎ

𝑄′𝑑𝑟 (6.62)
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Fig. 6.13 The blue annulus stream-
tube is used as our control volume in
the derivation of this section. The sta-
tions are denoted by ∞: far upstream,
𝑑: the rotor disk, and 𝑤 in the far
wake.

Fig. 6.14 Side view of control volume
with resultant force 𝑇. Note that this
is a drag force but is called thrust in
the wind turbine community.
*Perhaps because it can be considered as
a thrust force acting on the wind turbine
tower, and that is generally the primary
reason why this force is of interest in wind
turbine applciations.

where 𝑟ℎ and 𝑟𝑡 correspond to the hub and tip radius respectively. Right
at the hub/tip the loads go to zero and so we need not compute at those
points (indeed we cannot compute right at those points). Finally, from
the torque we can compute the required power.

𝑃 = 𝑄Ω (6.63)

While not necessary, it is often convenient to normalize using typical
propeller conventions. The thrust, torque, and power coefficients are
given by:

𝐶𝑇 =
𝑇

𝜌𝑛2𝐷4

𝐶𝑄 =
𝑄

𝜌𝑛2𝐷5

𝐶𝑃 =
𝑃

𝜌𝑛3𝐷5

(6.64)

(6.65)

(6.66)

where 𝑛 is the number of revolutions per second:

𝑛 =
Ω

2𝜋 (6.67)

and 𝐷 is the diameter. The efficiency is given by:

𝜂 =
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
=
𝑇𝑉∞
𝑄Ω

=
𝐶𝑇𝜌𝑛2𝐷4𝑉∞
𝐶𝑃𝜌𝑛3𝐷5 = 𝐽

𝐶𝑇

𝐶𝑃
(6.68)

All of these outputs are functions of the advance ratio (another nondi-
mensional parameter, recall discussion in Ex. 1.2):

𝐽 =
𝑉∞
𝑛𝐷

(6.69)

6.2 Blade Element Momentum Theory: Turbines

We now repeat the above derivations, but from the perspective of a
turbine. This section will be briefer as we can reuse most of the same
concepts, although there are a few unique considerations.

6.2.1 Linear Momentum Balance

We again use infinitesimally thin annulus streamtubes at each radial
station along the rotor (Fig. 6.13), and adopt the same three stations:
upstream, at the rotor disk, and in the wake.

Figure 6.14 shows the control volume from a side view. Note that
the net force on the blade is actually a drag force, but in the wind
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energy community it is referred to as a thrust* and so we will adopt
that convention here. First, we perform a mass balance.

𝜌𝑉∞𝐴∞ = 𝜌𝑉𝑑𝐴𝑑 = 𝜌𝑉𝑤𝐴𝑤 (6.70)

Notice that as the fluid slows down, the cross-sectional area increases.
Next, we apply an x-momentum balance across the entire control

volume, where we take the positive direction for x as downwind:

𝜌𝑉∞(−𝑉∞𝐴∞) + 𝜌𝑉𝑤(𝑉𝑤𝐴𝑤) = −𝑇 (6.71)

The standard definition for thrust for a wind turbine is positive in the
direction of𝑉∞. However, in the momentum balance we need to use the
force the turbine exerts on the fluid, which is in the opposite direction,
and is thus negative above. Combining these two expressions yields:

𝑇 = 𝜌𝐴𝑑𝑉𝑑(𝑉∞ −𝑉𝑤) (6.72)

It is not obvious that the pressure terms from the sides of the control
volume cancel, but they do. We can come up with the same result more
rigorously, with a cylindrical control volume that does not follow the
streamlines, but the details are omitted here.

Let us now use a second control volume just across the disk. We
will call the 𝑥 location just upstream of the disk station 2, and just
downstream will be called station 3. Performing a momentum balance
yields :

𝜌𝑉2(−𝑉2𝐴2) + 𝜌𝑉3(𝑉3𝐴3) = −𝑇 + 𝑝2𝐴2 − 𝑝3𝐴3 (6.73)

Because𝐴2 = 𝐴3 = 𝐴𝑑 and the velocity must vary continuously through
the disk (𝑉2 = 𝑉3) the above expression simplifies to:

𝑇 = 𝐴𝑑(𝑝2 − 𝑝3) (6.74)

Combining the two expressions for thrust (Eqs. 6.72 and 6.74) yields:

𝜌𝑉𝑑(𝑉∞ −𝑉𝑤) = (𝑝2 − 𝑝3) (6.75)

To relate the pressure change from station 2 to 3, we use Bernoulli’s
equation (Eq. 5.77). We cannot apply Bernoulli’s equation from station
2 to station 3 directly because work is done on the fluid between those
stations. However, we can apply the equation upstream of the turbine
and downstream of the turbine separately.

First, from station ∞ to station 2:

𝑝∞ + 1
2𝜌𝑉

2
∞ = 𝑝2 +

1
2𝜌𝑉

2
2 (6.76)
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then from station 3 to station 𝑤:

𝑝3 +
1
2𝜌𝑉

2
3 = 𝑝𝑤 + 1

2𝜌𝑉
2
𝑤 (6.77)

If we subtract the two equations and simplify using 𝑉2 = 𝑉3, and
assume our control volume is large enough so that 𝑝∞ = 𝑝𝑤 we have

𝑝2 − 𝑝3 =
1
2𝜌(𝑉

2
∞ −𝑉2

𝑤) (6.78)

This expression for the pressure drop is inserted into Eq. 6.75

𝜌𝑉𝑑(𝑉∞ −𝑉𝑤) = (𝑝2 − 𝑝3)

𝜌𝑉𝑑(𝑉∞ −𝑉𝑤) =
1
2𝜌(𝑉

2
∞ −𝑉2

𝑤)

𝑉𝑑(𝑉∞ −𝑉𝑤) =
1
2 (𝑉∞ −𝑉𝑤)(𝑉∞ +𝑉𝑤)

𝑉𝑑 =
1
2 (𝑉∞ +𝑉𝑤)

(6.79)

This yields the result that the velocity at the disk is half way between
the upstream and downstream velocity. A similar relationship was
derived for a lifting wing when we showed that the downwash at the
wing is half of the downwash in the farfield.

With this relationship, we can generically relate the velocities at the
3 stations using the unknown induced velocity 𝑢 (Fig. 6.15).

Fig. 6.15 Depiction of the induced
velocity in at the rotor disk and in the
farfield.

By convention one typically nondimensionalizes 𝑢 as follows:

𝑉𝑑 = 𝑉∞ − 𝑢

= 𝑉∞

(
1 − 𝑢

𝑉∞

)
= 𝑉∞ (1 − 𝑎)

(6.80)

The quantity 𝑎 is called the axial induction factor. Similarly, we can
express the far-field velocity as:

𝑉𝑤 = 𝑉∞(1 − 2𝑎) (6.81)
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†In practice there are many constraints, like
thrust constraints, structural constraints,
etc., and so the optimal induction is typi-
cally less than this value.

With these definitions, we can express thrust in terms of the axial
induction factor (using Eqs. 6.74, 6.75, 6.80, and 6.81):

𝑇 = 𝜌𝐴𝑑𝑉𝑑(𝑉∞ −𝑉𝑤)
= 𝜌𝐴𝑑𝑉∞(1 − 𝑎)(𝑉∞ −𝑉∞(1 − 2𝑎))
= 𝜌𝐴𝑑𝑉

2
∞(1 − 𝑎)(2𝑎)

(6.82)

We then nondimensionalize this expression to form the thrust coefficient
using turbine conventions. We use 𝑉∞ as the reference velocity in the
dynamic pressure, and the local annulus area as the reference area.

𝐶𝑇 =
𝑇

1
2𝜌𝑉

2
∞𝐴𝑑

= 4𝑎(1 − 𝑎)
(6.83)

One way to express the power is:

𝑃 = 𝑇𝑉𝑑 (6.84)

Using Eqs. 6.80 and 6.82 we have:

𝑃 = 𝜌𝐴𝑑𝑉
3
∞(1 − 𝑎)22𝑎 (6.85)

We normalize to compute the power coefficient:

𝐶𝑃 =
𝑃

1
2𝜌𝑉

3
∞𝐴𝑑

= 4𝑎(1 − 𝑎)2
(6.86)

To find the optimal induction for maximizing power we take derivatives
of this expression with respect to 𝑎:

𝑑𝐶𝑃

𝑑𝑎
= 4𝑎(2)(1 − 𝑎)(−1) + 4(1 − 𝑎)2 = 0

−2𝑎 + (1 − 𝑎) = 0
𝑎∗ = 1/3

(6.87)

Thus, to maximize power, with no constraints, the optimal induction
factor at each section is 1/3.† The corresponding maximum power
coefficient is:

𝐶𝑃(𝑎 = 1/3) = 16
27 ≈ 0.59 (6.88)

This is the maximum theoretical power coefficient for a turbine, and is
known as the Betz limit.
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9. Glauert, Airplane Propellers, 1935.

Fig. 6.16 Tip loss function, which goes
to zero at the tip, to simulate a finite
rotor.

6.2.2 Extensions and Modifications to the Basic Methodology

The basic momentum theory ignores the hub and tip vortices that affect
the induced velocity. Various correct methods exist; we use the simple
analytical expression developed by Prandtl.9

𝑓𝑡𝑖𝑝 =
𝐵

2

(
𝑅 − 𝑟
𝑟 | sin 𝜙 |

)
𝐹𝑡𝑖𝑝 =

2
𝜋

arccos(exp(− 𝑓𝑡𝑖𝑝))

𝑓ℎ𝑢𝑏 =
𝐵

2

(
𝑟 − 𝑅ℎ𝑢𝑏

𝑅ℎ𝑢𝑏 | sin 𝜙 |

)
𝐹ℎ𝑢𝑏 =

2
𝜋

arccos(exp(− 𝑓ℎ𝑢𝑏))

𝐹 = 𝐹𝑡𝑖𝑝𝐹ℎ𝑢𝑏

(6.89)

The absolute value is necessary because our definition permits both
positive and negative inflow angles. This hub/tip-loss factor (which is
always between 0 and 1) is applied directly to the thrust.

𝐶𝑇 = 4𝑎(1 − 𝑎)𝐹 (6.90)

The tip loss function is visualized in Fig. 6.16
One unique consideration for turbines is dealing with high induction

factors. The velocity in the wake from the momentum balance is shown
in Eq. 6.81. If 𝑎 increases above 0.5, then the equation predicts wake
velocities that reverse direction. This reversal is non-physical, as the real
flow entrains momentum in the wake through turbulence. Empirical
data is needed to determine the behavior as 𝑎 approaches 0.5 and
beyond. Notional behavior of the thrust coefficient with large induction
factors is seen in Fig. 6.17.
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2.0

C
T

momentum
(propeller)

momentum
(turbine)

empirical
(turb. wake)

propeller
brake

Fig. 6.17 Thrust coefficient as a func-
tion of axial induction factor
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11. Glauert and Committee, A General
Theory of the Autogyro, 1926.

12. Buhl Jr., A New Empirical Relationship
between Thrust Coefficient and Induction
Factor for the Turbulent Windmill State,
2005.

‡Pointed out in a personal communication
from Kenneth Lønbæk.

Fig. 6.18 The induced swirl velocity
is in the direction opposite to that of
the torque on the rotor.

Various extension methods exist for the turbulent wake region. A
common simple method is the quadratic fit from Glauert.11 However,
the Glauert correction does not maintain continuity when the tip/hub
loss corrections are included. Buhl provided a small modification of
Glauert’s method to provide that continuity.12 However, that modifi-
cation leads to nonzero thrust loads when the tip correction is zero,
which can be problematic for some optimization parameterizations. So
we use a small modification of that approach.‡

𝐶𝑇 =

(
14
9 𝑎2 − 4

9 𝑎 +
8
9

)
𝐹 for 0.4 ≤ 𝑎 ≤ 1 (6.91)

Additional considerations are needed for induction factors larger
than 1, the propeller brake region. The current expression Eq. 6.83
predicts a change in sign in the thrust force for induction factors greater
than 1. However, repeating the momentum balance shows that the force
still acts as a drag device (i.e., thrust in the wind turbine convention).

𝐶𝑇 = −4𝑎(1 + 𝑎)𝐹 for 𝑎 ≥ 1 (6.92)

For this case the rotor behaves like a propeller (requiring power input)
but with a large negative pitch so that the thrust is reversed allowing
the rotor to act like an aerodynamic brake.

6.2.3 Angular Momentum

Similar to the linear momentum case, where an induced velocity is
produced in opposition to the force on the rotor, the rotation of the
blades is accompanied by an induced swirl velocity in the opposite
direction to that of the torque on the rotor. Unlike, the linear momentum
case where the induced velocity change occurs across a large control
volume, the rotational velocity change occurs only across the rotor disk.
Conservation of momentum yields the same result as the linear case,
where the induced velocity at the disk is halfway between its upstream
and downstream values. In this case, upstream and downstream is just
upstream and downstream of the rotor disk, instead of in the farfield.
The induced rotational velocity is 0 upwind of the rotor, 𝑣 in the plane
of the rotor, and 2𝑣 downstream of the rotor (opposing the direction
of the torque on the rotor). Just like before, we define a normalized
version of this induced velocity, which we call the tangential induction
factor: 𝑎′ = 𝑣/𝑉𝑦 , where 𝑉𝑦 is the tangential inflow velocity and in the
absence of wind or other motion is just Ω𝑟.

The angular momentum balance can be obtained by taking the
position vector ⇀

𝑟 crossed into the momentum equation. In this case we
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Fig. 6.19 Velocity vectors for angular
momentum balance.

take 𝑟 as the radial distance from the center of the turbine. We repeat
the linear momentum equation from Eq. 1.75, except that we represent
the pressure and shear terms generically as a sum of forces.

𝜕

𝜕𝑡

∫
–𝑉
𝜌

⇀

𝑉𝑑–𝑉 +
∫
𝐴

𝜌
⇀

𝑉
(
⇀

𝑉 · 𝑑
⇀

𝐴
)
=

∑ ⇀

𝐹 (6.93)

Perform the cross product yields:

𝜕

𝜕𝑡

∫
–𝑉
𝜌(⇀𝑟 ×

⇀

𝑉)𝑑–𝑉 +
∫
𝐴

(⇀𝑟 ×
⇀

𝑉)𝜌
(
⇀

𝑉 · 𝑑
⇀

𝐴
)
=

∑
⇀
𝑟 ×

⇀

𝐹 (6.94)

Although a rotating turbine is fundamentally unsteady, we are typically
interested in time-averaged quantities (e.g., torque, thrust). Once time
averaged, the time-dependent term goes to zero. Then, to express this
equation more concisely we use the mass flow rate ¤𝑚 = 𝜌

⇀

𝑉 · 𝑑
⇀

𝐴, and
recognize the right hand side as torque (𝑄):∫

𝐴

(
®𝑟 × ®𝑉

)
¤𝑚 =

∑
®𝑄 (6.95)

We use a disk-shaped control volume that surrounds the rotor disk, and
assume no axial component of velocity exists on the sides of the control
volume. We are then interested in only the inflow and outflow velocity
vectors into the control volume. Figure 6.19 uses an ground-centered
inertial control volume, rather than a blade-centric control volume to
show the velocity triangles. This is a somewhat unconventional frame
of reference and orientation for a turbine/propeller, but is commonly
used in turbomachinery analysis, and is convenient for this particular
analysis. The figure illustrates the inflow and outflow on either side
of the control volume, and notes the direction of blade rotation. For a
turbine the direction of torque is in the same direction as the rotation
direction and so the induced velocity opposes the rotational direction
as shown in the figure.

We define a positive torque as is conventional for turbines, which is
that a positive torque is in the direction of motion (i.e., torque is about
our +𝑥 axis). The momentum equations need the torque the rotor exerts
on the fluid (not the torque the fluid exerts on rotor), and so we flip the
sign:

−𝑟Ω𝑟2𝑎′ ¤𝑚 = −𝑄
Ω𝑟22𝑎′ ¤𝑚 = 𝑄

(6.96)

Using the results from the previous section:

¤𝑚 = 𝜌𝑉𝑑𝐴𝑑 = 𝜌𝑉∞(1 − 𝑎)𝐴𝑑 (6.97)
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and adding the hub/tip loss factor results in:

𝑄′ = Ω𝑟22𝑎′𝜌𝑉∞(1 − 𝑎)𝐴𝑑𝐹 (6.98)

We normalize the torque in a similar way to thrust (but with an extra
term for the radius):

𝐶𝑄 =
𝑄′

1
2𝜌𝑉

2
∞𝐴𝑑𝑟

= 4𝑎′(1 − 𝑎)𝜆𝑟𝐹
(6.99)

where

𝜆𝑟 =
Ω𝑟

𝑉∞
(6.100)

is called the local tip-speed ratio.

6.2.4 Blade Element Theory

We have considered the momentum part of the theory, and now consider
the blade element portion. Blade element is just another name for 2D
airfoil theory. Consider the airfoil from a section of the blade shown in
Fig. 6.20. The inflow plus induced velocities from the previous sections
are shown resulting in the total inflow velocity vector𝑊 . The angle 𝜃,
from the plane of rotation to the airfoil chord line, is called the twist
angle. The angle 𝜙, from the plane of rotation to the inflow velocity
vector, is called in the inflow angle. The angle between the velocity
vector and the chord line is the angle of attack:

𝛼 = 𝜙 − 𝜃 (6.101)

Fig. 6.20 Definition for positive twist
and coordinate system for the blade
element theory.

With a known angle of attack we can compute the sectional lift
and drag coefficient from 2D airfoil data. The lift and drag coefficients
may in general also be functions of the Reynolds number (for wind
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turbines Mach numbers are generally low enough to be considered
incompressible).

𝑐𝑙 = 𝑓𝐿(𝛼, 𝑅𝑒)
𝑐𝑑 = 𝑓𝐷(𝛼, 𝑅𝑒)

(6.102)

These lift and drag coefficients are generally computed from a spline so
that the results vary smoothly. Because we do not know the induction
factors yet we usually approximate the Reynolds number using:

𝑊0 =

√
𝑉2
∞ + (Ω𝑟)2

𝑅𝑒 =
𝜌𝑊0𝑐

𝜇

(6.103)

The impact of this approximation is usually negligible as Reynolds
number changes occur across orders of magnitude.

Using the Kutta-Joukowski theorem, the directions for the lift and
drag coefficients, 𝑐𝑙 and 𝑐𝑑 are as shown in Fig. 6.21.

Fig. 6.21 Directions for the lift and
drag forces from the Kutta Joukowski
theorem.

We need to resolve these forces into the normal and tangential
directions as shown in the figure. These directions are consistent with
the way we have defined thrust and torque in the momentum equations.

𝑐𝑛 = 𝑐𝑙 cos 𝜙 + 𝑐𝑑 sin 𝜙

𝑐𝑡 = 𝑐𝑙 sin 𝜙 − 𝑐𝑑 cos 𝜙
(6.104)

To compute the total thrust and torque for this blade section we
then multiply by the local dynamic pressure (not freestream, including
induction) and the chord. This gives us the forces/moments per unit
length for one blade, and so to get the forces for the entire rotor we
need to multiply by the number of blades 𝐵:

𝑇′ = 𝐵𝑁′

𝑇′ = 𝐵𝑐𝑛
1
2𝜌𝑊

2𝑐
(6.105)
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§Total solidity, or sometimes just solidity,
is the ratio of the total blade area relative
to total disk area.

𝑄′ = 𝐵𝑟𝑇′

𝑄′ = 𝐵𝑟𝑐𝑡
1
2𝜌𝑊

2𝑐
(6.106)

where
𝑊 =

√
[𝑉∞(1 − 𝑎)]2 + [Ω𝑟(1 + 𝑎′)]2 (6.107)

If we use the same normalizations from the previous section we obtain:

𝐶𝑇 = 𝑐𝑛𝜎
′
(
𝑊

𝑉∞

)2
(6.108)

where

𝜎′ =
𝐵𝑐

2𝜋𝑟 (6.109)

is called the local solidity and is a ratio of the area of the blades relative
to the disk area, at a given radius.§ Using Fig. 6.20 we can relate the
velocities as:

sin 𝜙 =
𝑉∞(1 − 𝑎)

𝑊
(6.110)

Thus, the local thrust coefficient from blade element theory is:

𝐶𝑇 = 𝑐𝑛𝜎
′
(
(1 − 𝑎)
sin 𝜙

)2
(6.111)

We repeat the same process for the torque coefficient. The velocities
can be related using Eq. 6.110 or with

cos 𝜙 =
Ω𝑟(1 + 𝑎′)

𝑊
(6.112)

For the torque coefficient is will be convenient to use one of each
substitution in place of𝑊 .

𝐶𝑄 = 𝑐𝑡𝜎
′
(
𝑊

𝑉∞

)2

= 𝑐𝑡𝜎
′𝜆𝑟

(
(1 − 𝑎)(1 + 𝑎′)

sin 𝜙 cos 𝜙

) (6.113)

6.2.5 Blade Element Momentum

We can now combine the results from momentum theory and blade
element theory. We first equate the linear momentum equations
(thrust), and next the angular momentum equations (torque). Finally,
we discuss the residual equation which determines whether or not we
have consistency between the momentum and blade element theories.
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We equate the thrust from momentum theory and blade element
theory. In the wind turbine case, the thrust coefficient from momentum
theory had three expressions. For 𝑎 < 0.4 we have:

4𝑎(1 − 𝑎)𝐹 = 𝑐𝑛𝜎
′
(
(1 − 𝑎)
sin 𝜙

)2

4𝑎𝐹 = 𝑐𝑛𝜎
′ (1 − 𝑎)
sin2 𝜙

(6.114)

It will be convenient to group some of these terms into a new nondi-
mensional factor

𝜅 =
𝑐𝑛𝜎′

4𝐹 sin2 𝜙
(6.115)

With that definition the solution for 𝑎 is:

𝑎 =
𝜅

1 + 𝜅
(6.116)

The criteria for this equation was expressed in terms of 𝑎, but this is
not convenient as that is the quantity we are solving for. Instead, we
will express the criteria in terms of 𝜅. We require that

𝜅
1 + 𝜅

≤ 0.4

𝜅 ≤ 0.4(1 + 𝜅), (assuming 1 + 𝜅 > 0
or in other words 𝜅 > −1)

0.6𝜅 ≤ 0.4

𝜅 ≤ 2
3

(6.117)

Thus, this first cases applies if −1 ≤ 𝜅 < 2/3.
For the next case, 0.4 < 𝑎 < 1, we use the empirical momentum

formula: (
14
9 𝑎2 − 4

9 𝑎 +
8
9

)
𝐹 = 𝑐𝑛𝜎

′
(
1 − 𝑎
sin 𝜙

)2
(6.118)

This yields a quadratic formula that can be solved for 𝑎. After simpli-
fication it yields (noting that only the negative sign in the quadratic
formula is physically possible):

𝑎 =
𝛾1 −

√
𝛾2

𝛾3
(6.119)
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8. Ning, Using Blade Element Momentum
Methods with Gradient-Based Design
Optimization, 2021.

where
𝛾1 = 2𝜅 − 1

9

𝛾2 = 2𝜅 − 1
3

𝛾3 = 2𝜅 − 7
9

(6.120)

Using a similar process to express the criteria in terms of 𝜅 insteae of
𝑎, we can show that the equation applies when 𝜅 > 2/3 (and thus the
denominator will never be zero).

The case for 𝑎 > 1, the propeller break region, leads to a similar
equation to the first case, but with a negative sign. The result is:

𝑎 =
𝜅

𝜅 − 1 (6.121)

If 𝑎 > 1 then from Fig. 6.20 we see that the angle 𝜙 would need to
change signs. Thus, this case only applies when 𝜙 < 0. This case is
exactly the same as the first momentum case, if we replace 𝜅 with −𝜅.

We can consolidate these three cases as shown in Algorithm 1.
Note that 𝜅 = −1 is only physically consistent if 𝑉∞ = 0.8 For nonzero
inflow, we know that 𝜅 cannot equal -1 so if any intermediate iterations
produces 𝜅 = -1 we can simply return a nonzero residual and continue
iterating.

Algorithm 1 Solve for the axial induced velocity.
if 𝜙 < 0 then

𝜅 = −𝜅
end if

if 𝜅 ≤ 2/3 then
𝑎 = 𝜅/(1 + 𝜅) if 𝜅 = −1 return any nonzero residual.

else
𝑎 = (𝛾1 −

√
𝛾2)/𝛾3

end if

We repeat a similar process for the torques, except in this case there
iis only one equation. Equating the torque coefficients from momentum
and blade element theories results in:

4𝑎′(1 − 𝑎)𝜆𝑟𝐹 = 𝑐𝑡𝜎
′𝜆𝑟

(
(1 − 𝑎)(1 + 𝑎′)

sin 𝜙 cos 𝜙

)
4𝑎′𝐹 = 𝑐𝑡𝜎

′
(

(1 + 𝑎′)
sin 𝜙 cos 𝜙

) (6.122)

https://dx.doi.org/10.1007/s00158-021-02883-6
https://dx.doi.org/10.1007/s00158-021-02883-6
https://dx.doi.org/10.1007/s00158-021-02883-6
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10. Ning, A Simple Solution Method for the
Blade Element Momentum Equations with
Guaranteed Convergence, 2014.

For convenience we define the nondimensional quantity:

𝜅′ =
𝑐𝑡𝜎′

4𝐹 sin 𝜙 cos 𝜙 (6.123)

We can now solve this for 𝑎′:

𝑎′ =
𝜅′

1 − 𝜅′ (6.124)

The above equations allow us to compute the induction factors.
However, we have to be careful as these calculations depend on 𝜙 and
the angle of attack, which in turn depend on the induction factors
(Fig. 6.20). Thus, we have a circular dependency and need to use
an iterative method, or a root solver. Traditionally, this is done by
considering 𝑎 and 𝑎′ as the unknowns and using the two equations
above to form two residuals. However, we can greatly simplify the
solution of these equations by considering 𝜙 and𝑊 as the unknowns.8,10

The inflow velocity has no direct dependence in the BEM equations
(other than in Reynolds number, which operates on a log scale and so the
impact is negligible). This means that we can reduce the residuals to one
equation, which is advantageous because one dimensional root finding
problems can be solved with guaranteed convergence. The solution
of the residual ensures compatibility between the blade element and
momentum theories. From Fig. 6.20 we can write:

tan 𝜙 =
𝑉∞(1 − 𝑎)
Ω𝑟(1 + 𝑎′) (6.125)

=
(1 − 𝑎)

𝜆𝑟(1 + 𝑎′) (6.126)

This equation could be rearranged in many ways to form a residual
equation, but as demonstrated in the above cited papers a numerically
advantageous form is:

ℛ(𝜙) =
sin 𝜙

1 − 𝑎 −
cos 𝜙

𝜆𝑟(1 + 𝑎′) = 0 (6.127)

https://dx.doi.org/10.1007/s00158-021-02883-6
https://dx.doi.org/10.1007/s00158-021-02883-6
https://dx.doi.org/10.1007/s00158-021-02883-6
https://dx.doi.org/10.1002/we.1636
https://dx.doi.org/10.1002/we.1636
https://dx.doi.org/10.1002/we.1636
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Fig. 6.22 The rotational velocity at a
given radial station on the blade.

In summary we define a residual function as follows:

function ℛ(𝜙) (6.128)
𝛼 = 𝜙 − 𝜃 (6.129)
𝑐𝑙 = 𝑓 (𝛼, 𝑅𝑒) (6.130)
𝑐𝑑 = 𝑓 (𝛼, 𝑅𝑒) (6.131)
𝑐𝑛 = 𝑐𝑙 cos 𝜙 + 𝑐𝑑 sin 𝜙 (6.132)
𝑐𝑡 = 𝑐𝑙 sin 𝜙 − 𝑐𝑑 cos 𝜙 (6.133)

𝜅 =
𝜎′𝑐𝑛

4𝐹 sin2 𝜙
(6.134)

Compute 𝑎 from Algorithm 1 (6.135)

𝜅′ =
𝜎′𝑐𝑡

4𝐹 sin 𝜙 cos 𝜙 (6.136)

𝑎′ = 𝜅′/(1 − 𝜅′) (6.137)

return
sin 𝜙

1 − 𝑎 −
cos 𝜙

𝜆𝑟(1 + 𝑎′) (6.138)

Generally, the solution will be in the bracket: 𝜙 = (0,𝜋/2] (note the
open bracket at zero). Thus, a method like Brent’s method can be
used to yield fast and robust convergence. If airfoil data has not been
extended to such high angles, a smaller range may suffice.

This procedure yields a solution at one radial station of the blade
(Fig. 6.22). Once we solve a section on the blade for the correct inflow
angle 𝜙∗ we can recalculate the resulting loads and induction factors
for that section:

𝑐𝑛 , 𝑐𝑡 , 𝑎, 𝑎
′ = 𝑓 (𝜙∗) (6.139)

We then compute the inflow velocity:

𝑊2 = (𝑉∞(1 − 𝑎))2 + (Ω𝑟(1 + 𝑎′))2 (6.140)

and the thrust and torque per unit length:

𝑇′ = 𝐵𝑐𝑛
1
2𝜌𝑊

2𝑐 (6.141)

𝑄′ = 𝐵𝑟𝑐𝑡
1
2𝜌𝑊

2𝑐 (6.142)

We then need to repeat these procedure at multiple radial stations
given by our chosen blade discretization. We then integrate across the
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blade to get total thrust and torque:

𝑇 =

∫ 𝑟𝑡

𝑟ℎ

𝑇′𝑑𝑟 (6.143)

𝑄 =

∫ 𝑟𝑡

𝑟ℎ

𝑄′𝑑𝑟 (6.144)

where 𝑟ℎ and 𝑟𝑡 correspond to the hub and tip radius respectively. Right
at the hub/tip the loads go to zero and so we need not compute at those
points (indeed we cannot compute right at those points). Finally, from
the torque we can compute the required power.

𝑃 = 𝑄Ω (6.145)

While not necessary, it is often convenient to normalize using typical
turbine conventions. The thrust, torque, and power coefficients are
given by:

𝐶𝑇 =
𝑇

1
2𝜌𝑉

2
∞𝜋𝑅2

𝐶𝑄 =
𝑄

1
2𝜌𝑉

2
∞𝜋𝑅3

𝐶𝑃 =
𝑃

1
2𝜌𝑉

3
∞𝜋𝑅2

(6.146)

(6.147)

(6.148)

where 𝑅 is the rotor radius. All of these outputs are functions of the
tip-speed ratio

𝜆 =
Ω𝑅

𝑉∞
(6.149)

6.3 Airfoil Data Corrections

The accuracy of the blade element methodology hinges on providing
accurate airfoil data, namely the tables of lift and drag coefficients as
functions of angle of attack (and potentially of Reynolds number and
Mach number as well). Unfortunately, static airfoil tables, whether from
experimental data or computational simulation, are rarely useful as is.

First, the airfoil forces, particularly the maximum lift, is significantly
affected by rotation. Most airfoil data is based on non-rotating condi-
tions. The Coriolis and centrifugal forces, generated from rotation, tend
to delay stall and allow for higher lift coefficients. Rotation corrections
are needed to account for this behavior.

Second, corrections for Reynolds number and/or Mach number
may be needed. Ideally, airfoil coefficients are provided at multiple
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*Himmelskamp was the first to identify
that the lift curves on sections of a rotating
propeller blade differed significantly from
the 2D wind tunnel data.13 Although theo-
retical explanations did not come for some
time after.
13. Himmelskamp, Profile investigations
on a rotating airscrew, 1947.

Reynolds/Mach numbers. If so, we can interpolate directly on the data
as Reynolds number and Mach number vary in the simulation. If such
data is not available, corrections can account for modest variations.
Mach number variation is rarely needed for wind turbines, or propellers
designed for low-speed aircraft.

Third, the angle of attack range from most airfoil data sources is too
limited. As compared to wings, the angle of attack along blades varies
much more significantly. This is because rotation changes the local
inflow speed, from small speeds near the hub to large speeds at the tip,
and thus the local inflow angle varies considerably. Thus, we usually
need to provide airfoil data across a larger range of angles of attack. For
wind turbines, the incoming wind can change direction significantly,
and startup and stopping introduces large changes in rotation speed
that can be important loading conditions. All of these considerations
lead to an even wider range of angles that need to be considered. Thus,
for wind turbines in particular, we typically extrapolate the data across
the full circle from 𝛼 = −180◦ to 180◦. For propellers, the extrapolation
can be much more modest and in some cases may not be needed at all
depending on the conditions being analyzed (e.g., the range of advance
ratios simulated).

If not extrapolated to large angles, we should reduce the solution
range shown below Eq. 6.56 to not extend all the way to 𝜋/2. That
is a wide enough value to bracket the solution without requiring any
information, but a tighter bracket can work as well if we use information
specific to our propeller. Knowing the twist angles, and provided angles
of attack (assuming a solution exist within the range of provided data),
we could provide a smaller upper bound on 𝜙 (Eq. 6.26).

6.3.1 Rotation Corrections

As discussed in Section 1.10, fluid moving in a rotating reference frame
experiences additional apparent forces, namely a Coriolis force and a
centrifugal force.* These forces are negligibly small for the flow around
a rotor, except in the boundary layer or in areas of separation where
the fluid is moving slowly.

The hub and tip vortices induce radial motion along the blade. The
hub vortex induces flow towards the tip, and the tip vortex induces
flow towards the hub, with the effects most pronounced near the ends.
From Eq. 1.131 we can see the Coriolis force associated with these
radial velocity components induces a force towards the trailing edge
near the hub, and towards the leading edge near the tip (Fig. 6.23).
These apparent forces act as a favorable and adverse pressure gradient
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Fig. 6.23 Coriolis force generated
from radial flow along blade.

respectively. Thus, near the hub, stall is delayed to higher lift coefficients
because of the favorable pressure gradient. Conversely, near the tip,
stall happens sooner than otherwise would occur on a non-rotating
section.

In addition to the Coriolis force, there is a centrifugal force directed
from hub to tip. This force accentuates the radial flow from the hub
vortex, and somewhat counteracts the radial flow from tip vortex. Thus,
we expect an even higher increase in maximum lift coefficients near the
hub, and a more subdued impact on maximum lift decreases near the
tip. Additionally, the radial flow from the centrifugal force extends the
region of separation out further from the hub, an effect called centrifugal
pumping. Thus, the effects of stall delay occur further out on the blade,
although they are still most pronounced near the hub.

Many rotation corrections models exit. Sometimes these are called
3D corrections, as they correct 2D non-rotating data to account for the
three-dimensional effects of radial flow. Although a basic motivation
for the behavior was described above, the flow mechanisms are complex
and still not fully understood. None of the models is considered highly
generalizable, though many share similar features.

A common form is:

𝑐𝑙3𝐷 = 𝑐𝑙2𝐷 + 𝑓𝑙

( 𝑐
𝑅
,
𝑟

𝑅
,𝜆, . . .

)
(𝑐𝑙 𝑝𝑜𝑡 − 𝑐𝑙2𝐷) (6.150)

where 𝑐𝑙2𝐷 is the provided non-rotating data, 𝑐𝑙3𝐷 is the rotationally-
corrected data, 𝑐𝑙 𝑝𝑜𝑡 is the idealized potential flow solution (Eq. 2.147),
and 𝑓𝑙 is a function that differs between the methods. Note that although
the theoretical lift curve slope is 2𝜋 (Eq. 2.148), and we can use that, it
is usually preferable to use the lift curve slope from the actual data as
determined by regression.

A similar expression is used for drag:

𝑐𝑑3𝐷 = 𝑐𝑑2𝐷 + 𝑓𝑑

( 𝑐
𝑅
,
𝑟

𝑅
,𝜆, . . .

)
(𝑐𝑑0 − 𝑐𝑑2𝐷) (6.151)

where 𝑐𝑑0 is the drag coefficient at zero degrees angle of attack. However,
there is less agreement on rotation-based drag models. In fact, there is
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16. Lindenburg, Investigation into Rotor
Blade Aerodynamics: Analysis of the sta-
tionary measurements on the UAE phase-VI
rotor in the NASA-Ames wind tunnel, 2003.

17. Du and Selig, A 3-D Stall-Delay
Model for Horizontal Axis Wind Turbine
Performance Prediction, 1998.

not even agreement on whether the drag should increase or decrease
(though most now predict an increase).

Many such models exist, only a few of which are highlighted below.
One of the original models, is from Snell,14,15 which identified the local
solidity (𝑐/𝑟 when stripping away constants) as a critical parameter in
predicting the enhancement in lift coefficient near the hub. This model
is simply:

𝑓𝑙 = 3.1
( 𝑐
𝑟

)2
(6.152)

For lower tip-speed ratios this model can be improved with:16

𝑓𝑙 = 3.1
( 𝑐
𝑟

)2 Ω𝑟

𝑊
(6.153)

where𝑊 is the local inflow velocity Eq. 6.33 or Eq. 6.107. If we ignore
the smaller contribution from induction that the last term can be
approximated as:

Ω𝑟

𝑊
≈ 𝜆2

𝑟

1 + 𝜆2
𝑟

(6.154)

where 𝜆𝑟 is the local tip-speed ratio (Eq. 6.100). Note that the local
tip-speed ratio is related to the tip-speed ratio Eq. 6.149 as:

𝜆𝑟 =
𝜆

𝑟/𝑅 (6.155)

This model does not have a corresponding drag formula.
Another popular model is from Du and Selig:17

𝑓𝑙 =
1

2𝜋

[
12.63(𝑐/𝑟)

(
𝑎 − (𝑐/𝑟)

𝑑
Λ(𝑟/𝑅)

𝑏 + (𝑐/𝑟)
𝑑

2Λ(𝑟/𝑅)

)
− 1

]
(6.156)

where 𝑎, 𝑏, and 𝑑 are tunable parameters set to 1 by default, and Λ is a
modified tip speed ratio:

Λ =
Ω𝑅√

𝑉2
𝑥 + (Ω𝑅)2

=
𝜆√

1 + 𝜆2
(6.157)

Although a similar drag formula was proposed, it predicts a decrease
in drag and is thus not often used.

Because these models are driven by the Coriolis force from the hub
vortex, and the centrifugal pumping pushing the separation location
further inboard, it should not be applied near the tip. For 𝑟/𝑅 > 0.8, no
correction is applied (though the correction naturally drops off anyway
with increasing radial location).
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Additionally, both of these methods will continue to provide en-
hanced lift coefficients at large angles of attack. In practice the correction
should only be applied in full up to some maximum angle. After about
30 degrees the corrections is tapered off towards zero (e.g., until 50
degrees 16 or until 90 degrees18).

For drag, one approach is to use the simple result from Eggers 19 that
relates the tangential force correction and the normal force correction
as follows:

Δ𝑐𝑡 = 0.12Δ𝑐𝑛 (6.158)

where these terms refer to corrections in tangential and normal force
respectively. We can relate these back to changes in lift and drag from
the definitions of these coordinate systems Fig. 6.21

Δ𝑐𝑑 = Δ𝑐𝑛 sin 𝜙 − Δ𝑐𝑡 cos 𝜙 (6.159)
Δ𝑐𝑙 = Δ𝑐𝑛 cos 𝜙 + Δ𝑐𝑡 sin 𝜙 (6.160)

If we substitute Eq. 6.158 into the above two equations we have:

Δ𝑐𝑑 = Δ𝑐𝑛
(
sin 𝜙 − 0.12 cos 𝜙

)
(6.161)

Δ𝑐𝑙 = Δ𝑐𝑛
(
cos 𝜙 + 0.12 sin 𝜙

)
(6.162)

We now solve Eq. 6.162 for 𝑐𝑛 and substitute it into Eq. 6.161 we have
the relationship:

Δ𝑐𝑑 = Δ𝑐𝑙

(
sin 𝜙 − 0.12 cos 𝜙
cos 𝜙 + 0.12 sin 𝜙

)
(6.163)

With this technique we could then use any model for the lift correction,
(i.e., Eq. 6.150 written in the form 𝑐𝑙3𝐷 = 𝑐𝑙2𝐷 + Δ𝑐𝑙) then compute a
corresponding drag correction from Eq. 6.163 that we apply as follows:

𝑐𝑑3𝐷 = 𝑐𝑑2𝐷 + Δ𝑐𝑑 (6.164)

Note that Eggers defines his own correction for the normal force
although that isn’t expounded on here.

While the above formulas were expressed in terms of the tip-speed
ratio, the advance ratio (Eq. 6.69), used for propellers, is related to the
tip speed ratio (Eq. 6.149) by:

𝜆 = 𝜋/𝐽 (6.165)

Rotation corrections can be done on the fly (i.e., computed at each
iteration of the analysis), or they can be pre-computed and built into the
airfoil polars that are fixed throughout the analysis. While on-the-fly is

https://dx.doi.org/10.1002/we.69
https://dx.doi.org/10.1002/we.69
https://dx.doi.org/10.1002/we.69
https://dx.doi.org/10.2514/6.2003-868
https://dx.doi.org/10.2514/6.2003-868
https://dx.doi.org/10.2514/6.2003-868
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perhaps ideal, pre-computation is more common because the combined
variation in airfoil data, post-stall behavior, rotation corrections, and
extrapolation (discussed later in this section) can sometimes lead to
unphysical results (e.g., abrupt changes, discontinuities, reversals, etc.).
By pre-computing, all airfoil polars can be inspected and adjusted as
needed.

The difficulty with pre-computing is that the corrections depend
on the radial station (𝑟), and so even in the case when a single airfoil is
used for the entire blade, separate airfoil files should be created at each
station. For wind turbines this is not so onerous as the airfoil typically
varies across the blade anyway. However, sometimes the amount of
effort is not justified for some blades where the rotational corrections are
relatively modest, and the operating conditions explored are minimal
and typical, so just one rotationally-corrected airfoil might be used for
the whole blade. This can sometimes be justifiable as high angles of
attack only occur near the root for normal operation, precisely where
such corrections would be most needed.

6.3.2 Reynolds and Mach Number Corrections

Another correction that may be needed is for Reynolds number. If
Reynolds number variation is significant, it is generally more accurate for
the airfoil force coefficients to be provided at multiple Reynolds numbers
(whether from computations or experiments). Then, the lift and drag
at a given Reynolds number is computed through interpolation.

However, if such data is not available, an on-the-fly Reynolds number
correction could be used instead. From Eq. 3.49 we have an analytic
solution to the skin friction coefficient for laminar flow over a flat plate.

𝐶 𝑓 =
1.328√
𝑅𝑒𝐿

(6.166)

For a flat plate the skin friction coefficient is also the drag coefficient.
For other shapes, the drag would still be (approximately) proportional
to the skin friction coefficient. We represent this proportionality with
some constant 𝑘:

𝑐𝑑 =
𝑘√
𝑅𝑒𝐿

(6.167)

If we know the drag at some Reynolds number, which we denote as
condition 0, and wish to estimate the drag at some other Reynolds
number (no subscript) we have the following ratio:

𝑐𝑑
𝑐𝑑0

=

√
𝑅𝑒0√
𝑅𝑒

(6.168)
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A turbulent boundary layer is more likely and so we can repeat
the same analysis with an empirical flat plate skin friction coefficient
(Eq. 3.53). In this case:

𝑐𝑑
𝑐𝑑0

=

(
𝑅𝑒0
𝑅𝑒

)0.2
(6.169)

Both cases can be represented as:

𝑐𝑑 = 𝑐𝑑0

(
𝑅𝑒0
𝑅𝑒

)𝑝
(6.170)

where 𝑝 = 0.5 for a purely laminar boundary layer, 𝑝 = 0.2 for a
turbulent boundary layer, or some other empirical value may be used
based on additional data.

This equation provides a simple way to estimate the drag for modest
changes in Reynolds number (at least within the same flow regime
of laminar or turbulent), given the drag coefficient at some known
Reynolds number (𝑐𝑑0 , 𝑅𝑒0). For modest changes in Reynolds number,
lift typically shows little variation and so may be neglected within this
approximation. While this method is not as accurate as providing data
at multiple Reynolds number, it is straightforward to apply and may be
sufficient in many cases.

For changes in Mach number similar approaches can be utilized.
Ideally, data is provided at different Mach numbers. But, if not, the
Prandtl-Glauert correction could be used (Eq. 5.182).

𝑐𝑙 =
𝑐𝑙0√

1 −𝑀2
∞

(6.171)

where 𝑐𝑙0 corresponds to the incompressible lift coefficient. This
correction affects only the lift and neglects any changes in drag. Again,
such corrections can be useful if other data is not available, and the
variations in Mach number are relatively modest. Unfortunately, the
Karman-Tsien correction cannot be used as the correction is for pressure
coefficients and does not result in a simple proportionality constant
that could be factored out of an integral for forces (as does the Prandtl-
Glauert method).

6.3.3 Extrapolation

As discussed previously sometimes it is desirable to extend the angle
of attack range of the airfoil data all the way from −180◦ to 180◦.
This may be for physical reasons (wind turbine startup/stop scenarios
which have high angles), numerical solution approaches (which may
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use a large bracket for robustness and simplicity), or optimization
robustness (in which intermediate solutions may have large twist angles).
Experimental data rarely exists at such high angles, so extrapolation
approaches are used. Fortunately at high angles, airfoils behave like a
flat plate and so the behavior can be captured in a relatively universal
way.

The Viterna method is the most commonly used extrapolation
approach.20 The extrapolation begins at an angle of attack 𝛼𝑠 , which
corresponds to the angle of attack at stall, the angle of attack at maximum
lift (after rotation corrections), or some other location in the stalled
region depending on the extent of reliable data. The extrapolation of
lift and drag for angles larger than 𝛼𝑠 (or less than −𝛼𝑛𝑠 where 𝛼𝑛𝑠
corresponds to stall at negative angles of attack) is:

𝑐𝑙 =
𝑐𝑑𝑚𝑎𝑥

2 sin(2𝛼) + 𝐴cos2 𝛼
sin 𝛼

𝑐𝑑 = 𝑐𝑑𝑚𝑎𝑥 sin2(𝛼) + 𝐵 cos 𝛼

(6.172)

(6.173)

where 𝐴 and 𝐵 are constants defined as:

𝐴 = (𝑐𝑙 𝑠 − 𝑐𝑑𝑚𝑎𝑥 sin 𝛼𝑠 cos 𝛼𝑠)
sin 𝛼𝑠
cos2 𝛼𝑠

(6.174)

𝐵 = 𝑐𝑑𝑠 −
𝑐𝑑𝑚𝑎𝑥 sin2 𝛼𝑠

cos 𝛼𝑠
(6.175)

The maximum drag coefficient, 𝑐𝑑𝑚𝑎𝑥 , is estimated from flat plate
experiments as:

𝑐𝑑𝑚𝑎𝑥 =

{
1.11 + 0.018𝐴𝑅 for 𝐴𝑅 < 50
2.01 for 𝐴𝑅 ≥ 50

(6.176)

The aspect ratio 𝐴𝑅 is defined as the blade radius divided by the chord
at 75% radius:

𝐴𝑅 =
𝑅

𝑐0.75𝑅
(6.177)

This method is generally considered reasonably accurate. However,
like the rotation corrections, it can sometimes produce nonphysical
results with abrupt changes or discontinuities so some care is needed in
implementation and usually it is used as a preprocessing step so that the
outputs can be inspected. Usually it is applied after rotation corrections,
another reason favoring precomputed rotational corrections.

6.3.4 Dynamic Stall

While everything we have discussed so far is based on static aerody-
namics, wind turbine and propeller aerodynamics are also subject to
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24. Hansen et al., A Beddoes–Leishman
Type Dynamic Stall Model in State-space
and Indicial Formulations, 2004.

dynamic behavior. This dynamic behavior may arise because of wind
fluctuations (e.g., turbulence), motion of the blades (e.g., aeroelasticity)
or both. If the dynamic behavior is slow†, then the steady approache
can be used reasonably well with instantaneous dynamic inputs. This
approach where static models are used with instantaneous time-varying
inputs is known as quasi-static. However, as the dynamic behavior in-
creases in speed, then the physical behavior can differ quite significantly
from quasi-static predictions. The topic of unsteady aerodynamics is
discussed more broadly in a separately chapter. In this section, just a
brief overview of the impact on rotors is noted.

The degree of unsteadiness is quantified by a nondimensional
number called the Strohaul number:

𝑆𝑡 =
𝑓 𝐿

𝑉
(6.178)

where 𝑓 is the frequency of the unsteady behavior, 𝐿 is some character-
istic length, and 𝑉 is the fluid velocity. For aerodynamics the reduced
frequency is more commonly used:

𝑘 =
𝜔𝑐
2𝑉 (6.179)

where 𝜔 is the circular frequency (𝑤 = 2𝜋 𝑓 ) and a length scale of 𝑐/2 is
used because of results from unsteady thin airfoil theory. If the reduced
frequency is small (say, 𝑘 < 0.05) then the behavior can be considered
quasi-static. Otherwise, a dynamic model is needed.

The lift, drag, and moment coefficients of airfoils in dynamic stall
exhibit hysteresis, meaning that as angle of attack is rapidly increased
then decreased the lift and drag curves do not follow the same path
back down as they did going up. Figure 6.24 depicts an example, where
an airfoil is under going a pitching motion with an amplitude of 4
degrees. Note that the dynamic lift coefficient not only differs from the
static lift coefficient, but that the lift coefficient when the angle of attack
is increased differs from that when the angle of attack is decreased.

Perhaps the most well known dynamic stall model is the Beddoes-
Leishman model, which arose out of the rotorcraft community.21,22

However, rotorcraft and wind turbine blades have different dynamic
stall behavior, as the thin airfoils in rotorcraft are more susceptible to
leading edge stall, and travel at speeds where compressibility is critical.
Wind turbines on the other hand have much thicker airfoil shapes,
and have other unique considerations like lead-lag vibration. Some
dynamic stall models that are specific to or commonly used in wind
turbine applications include the Øye model23 or the Risø model.24

https://dx.doi.org/10.4050/jahs.34.3
https://dx.doi.org/10.4050/jahs.34.3
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Fig. 6.24 Static airfoil lift coefficient in
dotted line. Cyclic behavior created
from a pitching airfoil with a reduced
frequency of 0.1, and a pitching am-
plitude of 4 degrees centered at 21
degrees angle of attack.

Fig. 6.25 The induced velocities in
the near field of the rotor computed
based on the induction at the rotor.

6.4 Wakes

While the details of wake development behind a propeller or turbine
are complex, we can generally obtain reasonable approximations for
two scenarios: in the near-field and far-field. In the near field, assuming
that the wake does not deform (i.e., moves straight back for a wing,
or continues in a rigid helicoidal shape for a rotor), is generally a
reasonable approximation. We could, for example, use the induced
velocities computed aft of the blade:

𝑉axial = 2𝑉∞𝑎 (6.180)

and
𝑉swirl = 2Ω𝑟𝑎′ (6.181)

These velocities are depicted in Fig. 6.25. Note that we don’t use the
velocities right at the disk. Instead, we are interested in behavior aft
of the rotor, which includes a factor of 2 as computed previously. The
downstream result of the previous sections is considered near-field in
the overall wake development, as the transition occurs quickly. This
type of near-field model can work well if we are reasonably close to the
rotor disk, typically within about one rotor diameter.

This type of model is sometimes used for tractor configurations
with the propeller forward of the wing. The wake of the propeller
impinges on the wing and modifies the input velocities (e.g., computed
using a VLM Section 4.5). Because the velocities in the propeller wake
increase in speed, in a blown wing concept multiple propellers can be
used to significantly increase the effective freestream velocity as seen
by the wing, allowing takeoff with much shorter runways. Sometimes
additional corrections are used to modify the effect of the axial and
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25. Jensen, A Note on Wind Generator
Interaction, 1983.

Fig. 6.26 Simple wake model defined
by a linearly expanding wake from
the rotor disk.

swirl velocities on the wing velocities, to better match experimental
data.

The other type of approximation that is sometimes used is a far-field
wakes. While the former type is more common for propellers, this
latter time is common for wind turbines. Far-field wake models are
motivated by the observed self-similarity of bluff-body wakes. This
means that after some distance, if properly normalized, the velocity
deficit profile collapses to a single curve. Thus, we expect that a
model can be developed to predict the behavior of a far-field wake in
a reasonably universal way. Self-similarity usually begins after a few
rotor diameters.

For a turbine, the velocity is decreased in the wake, which reduces
the power available to downstream turbines. Furthermore, the wake
increases turbulence increasing the fatigue loads on downstream tur-
bines. Thus, in a wind farm, wind turbines are far apart (usually at
least 6 diameters spacing) to reduce negative wake interactions. At
these separation distances a far-field assumption can be a reasonable
approximation.

One of the simplest turbine wake models is the Jensen model.25

We start a control volume at a point downstream of the rotor, where
the wake has developed as discussed in the previous sections (𝑉𝑤),
and continues in a self-similar manner forward of that point (Fig. 6.26).
From this point it expands linearly into the far-field (𝑉𝑓 ).

We now apply a mass balance to a cylindrical control volume starting
downstream of the disk, where we assume the starting diameter is
identical to that of the rotor disk, and end at an arbitrary location in the
farfield.

𝜌𝑉𝑑𝜋𝑅
2
𝑑
+ 𝜌𝑉∞(𝜋𝑅2 − 𝜋𝑅2

𝑑
) = 𝜌𝑉𝑤𝜋𝑅

2 (6.182)

Cancelling like terms and simplifying results in:

𝑉𝑑𝑅
2
𝑑
+𝑉∞(𝑅2 − 𝑅2

𝑑
) = 𝑉𝑤𝑅2 (6.183)

We now solve for the wake velocity:

𝑉𝑤 = 𝑉𝑑

(
𝑅𝑑
𝑅

)2
+𝑉∞

(
1 −

(
𝑅𝑑
𝑅

)2
)

(6.184)

Using the definition for the initial wake velocity in terms of an induction
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26. Katić et al., A simple model for cluster
efficiency, 1986.

factor (Eq. 6.81) results in:

𝑉𝑤 = 𝑉∞(1 − 2𝑎)
(
𝑅𝑑
𝑅

)2
+𝑉∞

(
1 −

(
𝑅𝑑
𝑅

)2
)

𝑉𝑤 = 𝑉∞

(
1 + (1 − 2𝑎 − 1)

(
𝑅𝑑
𝑅

)2
)

𝑉𝑤 = 𝑉∞

(
1 − 2𝑎

(
𝑅𝑑
𝑅

)2
) (6.185)

We have already assumed that the radius expands linearly with down-
stream distance 𝑥, starting from the disk, which we express as:

𝑅 = 𝑅𝑑 + 𝑘𝑥 (6.186)

The parameter 𝑘 is called the wake growth rate, and is the slope of the
linear wake profile. The rotor diameter (𝐷) is more commonly used
than radius, so we also make that change:

𝑉𝑤 = 𝑉∞

(
1 − 2𝑎

(
𝐷/2

𝐷/2 + 𝑘𝑥

)2
)

= 𝑉∞

(
1 − 2𝑎

(
𝐷

𝐷 + 2𝑘𝑥

)2
)

= 𝑉∞

(
1 − 2𝑎

(
1 + 2𝑘𝑥

𝐷

)−2
) (6.187)

Turbine wake models are typically expressed in terms of the velocity
deficit:

𝛿 =
Δ𝑉

𝑉∞
=
𝑉∞ −𝑉𝑤
𝑉∞

= 1 − 𝑉𝑤

𝑉∞
(6.188)

In this case the velocity deficit is:

𝛿 =
2𝑎(

1 + 2𝑘𝑥
𝐷

)2 (6.189)

The original Jensen model assumed that the rotor was optimally
loaded for maximum power (Eq. 6.87, 𝑎 = 1/3), but a later version
generalized to express the induction in terms of the induction factor.26

Using the momentum theory expression for thrust coefficient (Eq. 6.83),
we can solve for the induction factor:

𝑎 =
1
2

(
1 −

√
1 − 𝐶𝑇

)
(6.190)
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In solving the quadratic equation for 𝑎, we know that the negative sign
is the correct branch based on physically realizable induction factors
for this momentum region (Fig. 6.17). We substitute this expression
into the velocity deficit:

Δ𝑉

𝑉∞
=

1 −
√

1 − 𝐶𝑇(
1 + 2𝑘𝑥

𝐷

)2 (6.191)

We now have the final model:

𝛿(𝑥, 𝑟) =

(
1 −

√
1 − 𝐶𝑇

)
/
(
1 + 2𝑘𝑥

𝐷

)2
for |𝑟 | ≤ 𝐷/2 + 𝑘𝑥

0 otherwise
(6.192)

The initial Jensen model assumed an expansion rate of 𝑘 = 0.1 although
this is an adjustable constant. Today, more typical values are 𝑘 = 0.075
for onshore turbines, and 𝑘 = 0.04 for offshore.

This was a useful initial model that has served the community well,
but is not often used today as it is over-simplistic and has been replaced
by better models. The resulting velocity profile contains an unphysical
jump, and there is no dependence on other critical parameters like
freestream turbulence.

Many turbine wake models exist, we highlight just one more recent
model that is well used, which we will call the BP model as it was
developed by Bastankhah and Porté-Agel model.27 The BP model uses a
self-similar Gaussian distribution to describe the wake deficit, allowing
for a continuous and smooth velocity profile that matches experimental
data much better. Additionally, rather than satisfy only a mass balance,
both a mass and a momentum balance are used. The wake growth
rate is also computed as a function of turbulence intensity. Several
parameters in the model are tuned based on LES simulations. The
derivation is not discussed here, but we rather provide a summary. The
full model allows for changes in yaw angle, wake deflection, variations
both laterally and vertically (rather than an axisymmetric model), but
we ignore these considerations for simplicity in the expression shown
here. The result is:

𝛿(𝑥, 𝑟) =
(
1 −

√
1 − 𝐶𝑇𝐷2

8𝜎2

)
exp

(
−0.5

[ 𝑟
𝜎

]2
)

(6.193)

where 𝜎 is the wake width (as a standard deviation) defined as:

𝜎 = 𝑘∗(𝑥 − 𝑥0) +
𝐷

2
√

2
(6.194)

https://dx.doi.org/10.1017/jfm.2016.595
https://dx.doi.org/10.1017/jfm.2016.595
https://dx.doi.org/10.1017/jfm.2016.595
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Note that 𝑘∗ is defined slightly differently than the wake growth rate
mentioned earlier (𝑘∗ = 𝑑𝜎/𝑑𝑥 as opposed to 𝑘 = 𝑑𝐷/𝑑𝑥). A different
definition is necessary since a Gaussian distribution has no “edge”.
The physical effect is the same, both denote a growth rate in the width
of the wake, but the actual numbers used will not be the same. The
location 𝑥0, the point at which self-similarly is assumed to begin, is
computed as:

𝑥0 =
𝐷(1 +

√
1 − 𝐶𝑇)√

2(𝛼∗𝐼 + 𝛽∗(1 −
√

1 − 𝐶𝑇))
(6.195)

where 𝛼∗ = 2.32, 𝛽∗ = 0.154, and 𝐼 is the turbulence intensity (Eq. 3.148).
This model was later extended so the wake growth rate could be
computed as a function of turbulence intensity:28

𝑘∗ = 0.3837 𝐼 + 0.003678 (6.196)

Figure 6.27 shows an example comparing the Jensen model and
the BP model for some specific parameter choices noted in the figure
caption. The main highlight is to contrast the constant wake deficit
versus the smooth Gaussian deficit.
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Fig. 6.27 Both wake models are at
𝑥 = 6𝐷 with 𝐶𝑇 = 0.889. The Jensen
model used 𝑘 = 0.075, and the BP
used 𝐼 = 0.14.

The above discussion provides only an introduction to turbine wake
models. Various additional considerations are needed in a wind farm
model. Downstream turbines are often only partially overlapped by an
upstream wake, and typically an area overlap ratio is used to modify
the velocity deficits. When multiple wakes intersect the velocity deficits
must be combined in some way. Some common approaches include
a root-mean-square deficit or a linear sum of deficits. As the wind
changes direction, typically expressed as a probability distribution
called a wind rose, the wakes needed to be recomputed. Some models
assume independent calculations, while others require a downstream
marching approach to compute the effect of velocity deficits in a

https://dx.doi.org/10.3390/en9090741
https://dx.doi.org/10.3390/en9090741
https://dx.doi.org/10.3390/en9090741
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sequential manner. Wind shear, wake deflection, stratification, amongst
other considerations, can be important in obtaining good velocity and
power predictions in a wind farm.



7CFD

This chapter does not overview the CFD process or dive into any
theory. We simply visit a few fluid calculations that are relevant to CFD
applications.

7.1 Sizing the Prism Layer Mesh

In inviscid CFD an unstructured (or structured) mesh can be used all
the way to the body. However, in viscous CFD it is important to use
a structured mesh near the body. A structured mesh typically uses
quadrilaterals, hexahedrons, or prims cells. We will generically refer
to these structured boundary layer cells as prism cells in the below
discussion. Prism cells serve multiple purposes. They can more easily
be made high aspect ratio, which is important to efficiently capture a
boundary layer as flow quantities change much more rapidly normal
to the surface as compared to streamwise. Prism cells aligned with the
flow in the boundary layer also reduce numerical diffusion allowing
for more accurate solutions. This layer is called the prism layer. This
section discusses some techniques to size the mesh in the prism layer.

First, we need to choose an overall height for the prism layer. As
an estimate, we could use the boundary layer displacement thickness
from Schlichting’s empirical formulas for turbulent boundary layers
(Eq. 3.50):

𝐻 =
0.046𝑥
𝑅𝑒0.2

𝐿

(7.1)

where 𝐻 is the total height of the prism layer and 𝑅𝑒𝐿 = 𝑉𝑒𝐿/𝜈 with 𝐿
the boundary layer length. Since we generally don’t know 𝑉𝑒 before
computing the flow field, we will use the freestream velocity: 𝑅𝑒𝐿 =

𝑉∞𝐿/𝜈.
Next, we need to determine the height of the first cell. While various

wall models exist, in the following we assume that we want to fully
resolve the prism layer. In that case our first cell height should give a
𝑦+ value of 1 in order to resolve the viscous sublayer. Recall that 𝑦+ is a

229
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Reynolds number applicable near a wall:

𝑦+ =
𝑢𝜏𝑦

𝜈
(7.2)

where 𝑢𝜏 =
√
𝜏𝑤/𝜌 is the friction velocity.

If we need 𝑦+ equal to 1 (or some other value like 30 if using a wall
model) then we can solve for the 𝑦 value that is the height of our first
cell (which we call ℎ):

ℎ =
𝜈𝑦+

𝑢𝜏

= 𝜈𝑦+
√

𝜌

𝜏𝑤

= 𝜈𝑦+
√

𝜌

𝑐 𝑓
1
2𝜌𝑉

2
𝑒

=
𝜈𝑦+

𝑉𝑒

√
2
𝑐 𝑓

(7.3)

The Reynolds number (again using 𝑉∞ instead of the unknown 𝑉𝑒
is):

𝑅𝑒𝐿 =
𝑉∞𝐿

𝜈
(7.4)

We solve this for 𝜈 and plug into the above equation:

ℎ =
𝑦+𝐿

𝑅𝑒𝐿

√
2
𝑐 𝑓

(7.5)

This provides an estimate for the height of the first cell in the prism
layer in order to achieve a desired 𝑦+ value. We still need an estimate
for 𝑐 𝑓 but can use the Schlichting formulas for that too.

𝑐 𝑓 =
0.0592
𝑅𝑒0.2

𝐿

(7.6)

Now that we know the size of the prism layer, and the size of the
first cell, we need to determine how many cells span the prism layer.
Equivalently, we could determine the growth rate. The growth rate
is more fundamental, so it makes more sense to choose a growth rate
(e.g., 1.2) and then pick the number of cells accordingly.

CFD packages have different methods to space the cells in the prism
layer, but one common approach is geometric progression. The formula
for geometric progression is:

𝐻 = ℎ

(
𝑟𝑛 − 1
𝑟 − 1

)
(7.7)
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where 𝐻 is the overall height, ℎ the height of the first cell, 𝑟 the growth
rate, and 𝑛 the total number of cells. In our case, we want to solve for 𝑛:

𝑛 = log𝑟

(
𝐻

ℎ
(𝑟 − 1) + 1

)
(7.8)

Thus, we have a procedure to size the mesh in the prism layer.

7.2 Matching Mach and Reynolds Number Simultaneously

Matching Mach number and Reynolds number simultaneously for many
aerospace applications is difficult if not impossible experimentally. For
CFD applications we can of course match both simultaneously, but this
is a source of frequent error if we aren’t careful.

In CFD a compressible freestream boundary condition is typically
specified with Mach number, pressure, and temperature. Obviously,
we set the freestream Mach number to the desired match. But what
pressure and temperature do we use in order to match Reynolds
number?

Let’s start with the definitions of Mach number and Reynolds
number (based on chord in this case):

𝑀∞ =
𝑉∞
𝑎
, 𝑅𝑒 =

𝜌𝑉∞𝑐

𝜇

How does temperature and pressure affect these equations? The speed
of sound and the dynamic viscosity are both functions of temperature,
and the density is a function of pressure and temperature through a
thermodynamic equation of state (generally the ideal gas law). In other
words:

𝑀∞ =
𝑉∞
𝑎(𝑇) , 𝑅𝑒 =

𝜌(𝑝, 𝑇)𝑉∞𝑐

𝜇(𝑇)
The freestream velocity appears in both equations, so we solve for it in
one equation and plug it into the other.

𝑅𝑒 =
𝜌(𝑝, 𝑇)𝑀∞𝑎(𝑇)𝑐

𝜇(𝑇)

We note that we have a degree of freedom. We can either choose
a pressure and then solve for the corresponding temperature that
satisfies the equation, or we can specify temperature and then choose
the corresponding pressure that satisfies the equation. Intuitively that
should make sense. We should be able to match Mach and Reynolds
Number at any condition by appropriately choosing the other variables.
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The density has a simple relationship between pressure and tem-
perature through the ideal gas law:

𝑝 = 𝜌𝑅𝑇

where the specific gas constant 𝑅 = 286.9 J/(kg-K) for air. Substituting
that into our main equation results in:

𝑅𝑒 =
𝑝𝑀∞𝑎(𝑇)𝑐
𝑅𝑇𝜇(𝑇)

The speed of sound also has a simple relationship with temperature:

𝑎 =
√
𝛾𝑅𝑇

where 𝛾 = 1.4 for an ideal diatomic gases (and air is essentially entirely
composed of diatomic gases). Substituting in:

𝑅𝑒 =
𝑝𝑀∞

√
𝛾𝑅𝑇𝑐

𝑅𝑇𝜇(𝑇) =
𝑝𝑀∞

√
𝛾𝑐

√
𝑅𝑇𝜇(𝑇)

The only thing we haven’t substituted in is the dynamic viscosity
dependence on temperature. We won’t directly substitute in an expres-
sion, just because it is a bit long. For an ideal gas, the dynamic viscosity
can be found from Sutherland’s law:

𝜇 = 𝜇𝑟𝑒 𝑓

(
𝑇

𝑇𝑟𝑒 𝑓

)3/2 𝑇𝑟𝑒 𝑓 + 𝑆
𝑇 + 𝑆

where 𝑇𝑟𝑒 𝑓 = 273.15, 𝑆 = 110.4, 𝜇𝑟𝑒 𝑓 = 1.716 × 10−5 kg/(m-s).
We can see that the easiest way to solve this equation is to choose 𝑇,

and then compute 𝑝 (note that the units for 𝑇 are Kelvin in all of these
equations):

𝑝 =
𝑅𝑒 𝜇(𝑇)

√
𝑅𝑇

𝑀∞𝑐
√
𝛾

By choosing a 𝑇, we know everything on the right hand side and can
directly solve for 𝑝.

The opposite approach is also possible (choose 𝑝 then solve for 𝑇),
but is more work. We move everything related to 𝑇 to the left-hand
side.

√
𝑇𝜇(𝑇) =

𝑝𝑀∞𝑐
√
𝛾

𝑅𝑒
√
𝑅

We actually can solve for 𝑇 explicitly through a quadratic function, but
it’s messy and is easier just to solve the above numerically as a root
finding problem:

𝑓 (𝑇) =
√
𝑇𝜇(𝑇) −

𝑝𝑀∞𝑐
√
𝛾

𝑅𝑒
√
𝑅

= 0
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We use a root finding algorithm to find the 𝑇 that satisfies 𝑓 (𝑇) = 0
(where again 𝑇 is in Kelvin).

Either approach is fine, but remember that when you set the tem-
perature and pressure in your boundary condition, you should also use
those values to set the initial conditions (or at least something close).
If your initial conditions are very far from the steady state solution,
you may have numerical issues and a difficult time converging. If you
change pressure, it may be easiest to just change the reference pressure
and then your gauge pressure can remain at zero elsewhere.
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